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Some weak forms of the Axiom of Choice:

@ The Weak Axiom of Choice wAC says that for any

countable family of non-empty subsets of a given set of
power 2% there exists a choice function.

@ The Axiom of Dependent Choice DC says that for any
binary relation R on a non-empty set A such that for every
a € A there exists a b € A such that aRb, for every a € A

there exists a function f : w — A satisfying f(n)Rf(n + 1)
forany n € w and f(0) = a.
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Some weak forms of the Axiom of Choice:

@ The Weak Axiom of Choice wAC says that for any

countable family of non-empty subsets of a given set of
power 2% there exists a choice function.

@ The Axiom of Dependent Choice DC says that for any
binary relation R on a non-empty set A such that for every
a € A there exists a b € A such that aRb, for every a € A

there exists a function f : w — A satisfying f(n)Rf(n + 1)
forany n € w and f(0) = a.

Then
AC — DC, DC — wAC

and the implications cannot be reversed
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there exists a Bernstein set B C X, i.e. WR — BS.
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A subset B C X is called a Bernstein set if [B| = |[X \B|=¢
and neither B nor X \ B contains a perfect subset.

Theorem 1 (F. Bernstein [1] )

If an uncountable Polish space X can be well-ordered, then
there exists a Bernstein set B C X, i.e. WR — BS.

- a Bernstein set is a classical example of a non-measurable set
Theorem 2 (F. Bernstein [1] )

A Bernstein set does not possess the Baire Property and is not
Lebesgue measurable, i.e. BP — —-BS and LM — —BS.
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LM

WR
BP

BS: there exists a Bernstein set
‘WR: the set of R can be well-oredered

LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property
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o (W eX)@3dyeV)x—yeb.

such thatx —y € D.

Note that, for every x € X there exists exactly one realy € V

- the family {{y € X : x —y € D} : x € X} is a decomposition
of the set X and we call it the Vitali decompaosition
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Let (X, +,0) be additive group. A setV C X is called a Vitali
set if there exists a countable dense subset D such that
® (W,y)((X,y EVAX#Y)—=x—Yy ¢D),
o (W eX)@3dyeV)x—yeb.

such thatx —y € D.

Note that, for every x € X there exists exactly one realy € V

the selector is a Vitali set

of the set X and we call it the Vitali decompaosition
- if there exists a selector for the Vitali decomposition then

- the family {{y € X : x —y € D} : x € X} is a decomposition
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Theorem 3 (G. Vitali [4])

i.,e. WR — VS.

Theorem 4 (G. Vitali [4])

If the real line can be well-ordered, then there exists a Vitali set,
- a Vitali set is an another example of a non-measurable set

A Vitali set does not possess the Baire Property and is not
Lebesgue measurable, i.e. BP — -VS and LM — —VS.
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LM

BS: there exists a Bernstein set

WR: the set of R can be well-oredered
'VS: there exists a selector for a Vitali set

LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property
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Let us consider the family P(w) of all subsets of w. P(w) is
a Boolean algebra and the set

Fin={A Cw:|A| <No}
of all finite subsets of w is an ideal of algebra P(w).

@ we can consider the quotient algebra P(w)/Fin and we
denote by ¢ its cardinality

t=|P(w)/Fin|
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Let us consider the family P(w) of all subsets of w. P(w) is
a Boolean algebra and the set

Fin={A Cw:|A| <No}
of all finite subsets of w is an ideal of algebra P(w).

@ we can consider the quotient algebra P(w)/Fin and we
denote by ¢ its cardinality

t=|P(w)/Fin|

@ we define relation <« between cardinalities of sets as

Al < [B| = (3f)(f: B 22 A)

m]
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The inequalities 2% < ¢ and ¢ < 2% hold true. Moreover, if
the set P(w) can be well-ordered, then £ = 2%, j.e.
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The inequalities 2% < ¢ and ¢ < 2% hold true. Moreover, if
the set P(w) can be well-ordered, then £ = 2%, j.e.
In1 — -WR.

Note the following: if A, B are sets such that |A| < |B|, |B| < |A|
then A can be well-ordered if and only if B can be well-ordered.

Corollary 6

A set of cardinality ¢ can be well-ordered if and only if the set
of reals R can be well-ordered.
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The inequalities 2% < ¢ and ¢ < 2% hold true. Moreover, if
the set P(w) can be well-ordered, then £ = 2%, j.e.
In1 — -WR.

Note the following: if A, B are sets such that |A| < |B|, |B| < |A|
then A can be well-ordered if and only if B can be well-ordered.

Corollary 6

A set of cardinality ¢ can be well-ordered if and only if the set
of reals R can be well-ordered.

If a set of cardinality ¢ cannot be linearly ordered, then
Ny <N +¢< Ny +8&i.e. 7-Lk — In2.
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"Wk
LM I
\ —-WR
-VS
/ﬁBS
BP

Inl: c<k <

Inl

In2: B <N; +ec< R +k
-Lk /

‘Wk: a set of cardinality k can be well-ordered

Lk: a set of cardinality k can be linearly ordered

BS: there exists a Bernstein set

WR: the set of R can be well-oredered
VS: there exists a selector for a Vitali set

LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property

DA™



Regularity properties on the real line

DA™



Regularity properties on the real line

Vitali set V on the Cantor space “2

DA™



Vitali set V on the Cantor space “2
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is a Vitali decomposition of the Cantor space “2
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Vitali set V on the Cantor space “2
o (W, y)((x,y eV Ax#y)—{n:x(n)#y(n)} € [w]”
- the family

9 (Vx €%2)(3y e V){n:x(n) #y(n)} € [w]=~.

{{y e“2:{n:x(n) #y(n)} € [w]**} : x € “2}
is a Vitali decomposition of the Cantor space “2
-iff : P(w) — “2is a function such that f(A) = x(A) for any
A C w, then

= - P
f.7?(w)/F|nonto 2/Fin

A Vitali set V on Cantor space “2 is a set of cardinality ¢.
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@ Vitali decomposition: T/D={{y e T:x —y € D} : x € T}

wo i 171
f: 2/F|n0E>OT/]D)
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@ Vitali decomposition: T/D={{y e T:x —y € D} : x € T}
w5 e L=
f:“2/Fin =3 T/D

@ if there exists a selector for the Vitali decomposition, then
a Vitali set is the set of cardinality ¢
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@ Vitali decomposition: T/D={{y e T:x —y € D} : x € T}
we j 11
f:“2/Fin =3 T/D
@ if there exists a selector for the Vitali decomposition, then
a Vitali set is the set of cardinality ¢

Vitali set on the circle T for the set of all rational numbers Q
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)

@ Vitali decomposition: T/D={{y e T:x —y € D} : x € T}
we j 11
f:“2/Fin =3 T/D
@ if there exists a selector for the Vitali decomposition, then
a Vitali set is the set of cardinality ¢
Vitali set on the circle T for the set of all rational numbers Q
Thus,

T/Q = (T/D)/(Q/D)
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Vitali set on the circle T for the set of all dyadic numbers D
)

@ Vitali decomposition: T/D={{y e T:x —y € D} : x € T}
we j 11
f:“2/Fin =3 T/D
@ if there exists a selector for the Vitali decomposition, then
a Vitali set is the set of cardinality ¢
Vitali set on the circle T for the set of all rational numbers Q
Thus,

T/Q = (T/D)/(Q/D)

t=Ro.|T/Q|
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Aset A C Tis called atail-set iftheset{r e T: A+r =A}
contains a countable subset dense in T.

Theorem 10 (J. Mycielski [1])

If AC, holds true, then there exist a Lebesgue non-measurable
set of reals and a set which does not possess the Baire
Property, i.e. LM — =AC, and BP — —-AC,.
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Aset A C Tis called atail-set iftheset{r e T: A+r =A}
contains a countable subset dense in T.

Theorem 10 (J. Mycielski [1])

If AC, holds true, then there exist a Lebesgue non-measurable
set of reals and a set which does not possess the Baire
Property, i.e. LM — =AC, and BP — —-AC,.

- similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality ¢ is linearly ordered, then there exist

a Lebesgue non-measurable set of reals and a set which does
not possess the Baire Property, i.e. LM — —Lk and BP — —Lk
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-AC,

LM

-WR

Inl: c<k<e

Inl

In2
—t 113

In2: N) <Ny +c <Ny +k;
BS: there exists a Bernstein set
‘WR: the set of R can be well-oredered
VS: there exists a selector for a Vitali set
‘Wk: a set of cardinality k can be well-ordered
Lk: a set of cardinality k can be linearly ordered LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property
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A free ultrafilter on w is a filter 7 C P(w) not containing any
finite set and for every A C w, eitherAe Jorw \ A € J.

If the real line can be well-ordered, then there exists a free
ultrafilter on w, i.e. WR — FU.

Theorem 13 (W. Sierpinski [1])

A free ultrafilter on w is a Lebesgue non-measurable set and

does not possess the Baire Property, i.e. LM — =FU and
BP — —FU.
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-AC,

LM

-WR

Inl: c<k<ec
/Inl
BPE— N

—Lk

In2: N) <Ny +¢c <Ny +k;
‘Wk: a set of cardinality k can be well-ordered
Lk: a set of cardinality k can be linearly ordered

BS: there exists a Bernstein set
FU: there exists a free ultrafilter on w

‘WR: the set of R can be well-oredered
VS: there exists a selector for a Vitali set
LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property
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Theorem 14 (J. Raisonnier)
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If X; < ¢, then there is a Lebesgue non-measurable set, i.e.
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- some kind of duality between measure and category,
J. Raisonnier [3] proved in the theory ZF + wAC that
Theorem 14 (J. Raisonnier)

LM — Inc.

ZF + wAC.

If X; < ¢, then there is a Lebesgue non-measurable set, i.e.

@ parallel theorem on the Baire Property is not provable in
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LM

-WR

Inl: c<k<e

Inl
/
BP \

=Lk
‘Wk: a set of cardinality k can be well-ordered
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WR the set of reals R can be well-ordered;

=lnc X; and ¢ are comparable, i.e X; < c;

L De there exists a selector for the Lebesgue decomposition.
get Inc — In3.

@ If Xy and ¢ are incomparable, then ¢ = 2% < 2%, Thus, we
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If wCH holds true, then the following are equivalent:
WR the set of reals R can be well-ordered;
=lnc X; and ¢ are comparable, i.e X; < c;
L De there exists a selector for the Lebesgue decomposition.

@ If Xy and ¢ are incomparable, then ¢ = 2% < 2%, Thus, we
get Inc — In3.

@ from X; < 2%t we have wCH — In3
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-Wk
I Inl: c<k<ec
LM “WR In3: ¢ # 2™

Inl In2: N) <Ny +c <Ny +k;

Inc: N; and ¢ are incomparable
BS: there exists a Bernstein set
BP \ FU: there exists a free ultrafilter on w
Lk ‘WR: the set of R can be well-oredered
VS: there exists a selector for a Vitali set

LDe: there exists a selector for Lebesgue decomp. wCH: there is no set X such that Ry < |X| < ¢

Lk: a set of cardinality k can be linearly ordered LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property
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Theorem 16

If every uncountable set of reals contains a perfect subset, then
there is no set X such that Xy < |X| < ¢, i.e. PSP — wCH.
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Theorem 16

If every uncountable set of reals contains a perfect subset, then
there is no set X such that Xy < |X| < ¢, i.e. PSP — wCH.

Theorem 17

If every uncountable set of reals contains a perfect subset, then
N; and c are incomparable, i.e. PSP — Inc.

n}

8]

1

w
it
S
o
i)



Regularity properties on the real line

-AC, Inc——— =% In3
-Wk
CH: X; =c
Inl: c<k<e
LM “WR In3: ¢ £ 2%

PSP Tnl In2: N) <Ny +¢c <Ny +k;

Inc: N; and ¢ are incomparable
BS: there exists a Bernstein set

FU: there exists a free ultrafilter on w
=Lk

‘WR: the set of R can be well-oredered

BPE— N

'VS: there exists a selector for a Vitali set
wCH: there is no set X such that Ry < |X| < ¢

LM: every set of R is Lebesgue measurable

LDe: there exists a selector for Lebesgue decomp.
Lk: a set of cardinality k can be linearly ordered

PSP: every uncount. set of R contains a perfect set BP: every set of R possesss the Baire property
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Negative implications:
- according to Theorem 15
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Negative implications:
- according to Theorem 15

wCH AWR = CH
- by K. Godel constructible universe L we have a model in which
wWCH -» -WR, In3 -» -WR,

WCH -~ Inc, In3 - Inc,

WCH -+ —LDe, In3 -» —LDe.
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The Axiom of Determinacy AD states that every two-person
games of length w in which both players choose integers is

determined; that is, one of the two players has a winning
strategy.
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DA™



Regularity properties on the real line

The Axiom of Determinacy AD states that every two-person
games of length w in which both players choose integers is

determined; that is, one of the two players has a winning
strategy.

@ AD was proposed as an alternative to the Axiom of Choice
by J. Mycielski and H. Steinhaus [2], but it is not possible to
prove the consistency of ZF + AD with respect to ZF,

@ the consistency strength of AD is indicated as much high
in due to results by Solovay and mainly by T. Jech [4].
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-AC,

/ Inc —— 3% In3
—LM

\

AD

-Wk
PSP

CH: ¥, =c
~WR

Inl: c<k<ec
In3: ¢ # 2N

Inl
/
BP \

In2: N) <N +¢c <Ny +k;
Inc: N; and ¢ are incomparable
BS: there exists a Bernstein set
—Lk
LDe: there exists a selector for Lebesgue decomp.
Lk: a set of cardinality k can be linearly ordered
PSP: every uncount. set of R contains a perfect set

FU: there exists a free ultrafilter on w
‘WR: the set of R can be well-oredered

'VS: there exists a selector for a Vitali set
wCH: there is no set X such that Xy < | X| < ¢
LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property
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If AD holds true, then

2R« ¢ = 2%,

are equiconsistent
(@ ZFC +IC;t

c) there exists a surjection of P(w) onto P(w1), i.e.
By R. Solovay [2] and by S. Shelah [4] the following theories

(b) ZFC + every Z%-set of reals is Lebesgue measurable;
IC denote statement “there exists a strongly inaccessible cardinal’, i.e.
a limit regular cardinal x such that for any A < x we have 2%< k.- =
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a) WAC, PSP, LM, BP hold true,
b) AC fails,

Theorem 18 (J. Mycielski, R. Solovay)
If AD holds true, then

2R« ¢ = 2%,

c) there exists a surjection of P(w) onto P(w1), i.e.

By R. Solovay [2] and by S. Shelah [4] the following theories
are equiconsistent

(@ ZFC +IC;t

(c) ZF + DC + LM.

(b) ZFC + every Z%-set of reals is Lebesgue measurable;
IC denote statement “there exists a strongly inaccessible cardinal’, i.e.
a limit regular cardinal x such that for any A < x we have 2%< k.- =
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Theorem 19

If WAC holds true then R, is a regular cardinal
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Theorem 19
If WAC holds true then X, is a regular cardinal.
- by the Shelah’s argument in his Remark (1) of [4], the theory

ZF + wAC +LM

is equiconsistent with the previous theories (a)-(c).
- S. Shelah proved that the consistency of ZF implies
(d) ZF

(e) ZF + WAC + BP

the consistency of ZF + wAC + BP, i.e. the theories
are equiconsistent.
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ZF +wWAC + LM is strictly greater than that of
ZF + wAC + BP,
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Regularity properties on the real line

@ by Shelah’s model the consistency strength of

ZF +wWAC + LM is strictly greater than that of
ZF + wAC + BP,

@ by Solovay’s model the consistency of ZF + wAC + LM is
greater than that of ZF + wAC + PSP.

Thus, a natural question arises:

Is consistency of the existence of an inaccessible cardinal
necessary for PSP?

We give a positive answer to this question :)
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Theorem 20

If PSP holds true and R; is a regular cardinal, then X, is

an inaccessible cardinal in the constructible universe L.
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Theorem 20

If PSP holds true and R; is a regular cardinal, then X, is

an inaccessible cardinal in the constructible universe L.

the theories (a)-(c)

@ the theory ZF+YX, is regular +PSP is equiconsistent with
ZF + wCH, we obtain

Since the theories (d)-(e) are equiconsistent with the theory

that of ZF + wAC + wCH.

not provable in the theory ZF + DC.

@ the consistency of ZF + wAC + PSP is strictly greater than
S. Shelah [4] showed that Theorem 14 on the Baire Property is

DA™



Regularity properties on the real line

Thus, we get:

DA™



Regularity properties on the real line

Thus, we get:

@ BP —» Inc,

DA™



Regularity properties on the real line

Thus, we get:

@ BP —» Inc,

@ since BP implies “WR,

DA™



Regularity properties on the real line

Thus, we get:

@ BP —» Inc,

@ since BP implies “WR, then -WR - Inc,

DA™



Thus, we get:

@ BP —» Inc,

@ since BP implies “WR, then -WR - Inc,

@ according to Theorem 15 we get BP —-» wCH,

DA™



Regularity properties on the real line

Thus, we get:
@ BP —» Inc,

@ since BP implies “WR, then -WR - Inc,
@ according to Theorem 15 we get BP —-» wCH,
@ by Theorem 16 we know that PSP — wCH,

DA™
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Thus, we get:
@ BP —» Inc,

@ since BP implies “WR, then -WR - Inc,
@ according to Theorem 15 we get BP —-» wCH,

@ by Theorem 16 we know that PSP — wCH, therefore
BP —» PSP,
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Regularity properties on the real line

Thus, we get:
@ BP —» Inc,
@ since BP implies “WR, then -WR - Inc,
@ according to Theorem 15 we get BP -+~ wCH,

@ by Theorem 16 we know that PSP — wCH, therefore
BP —» PSP,

@ however, according to Theorem 14
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Regularity properties on the real line

Thus, we get:
@ BP —» Inc,
@ since BP implies “WR, then -WR - Inc,
@ according to Theorem 15 we get BP -+~ wCH,

@ by Theorem 16 we know that PSP — wCH, therefore
BP —» PSP,

@ however, according to Theorem 14 we have BP - LM.
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Regularity properties on the real line

Diagram in which none of the indicated implications is provable

in the theory ZF + DC

-AC, Inc
AD LM wCH -CH
-VS
PSP
I -BS -FU
BP
-Lk

LDe: there exists a selector for Lebesgue decomp.
Lk: a set of cardinality k can be linearly ordered

PSP: every uncount. set of R contains a perfect set

In3
-Wk
—LDe CH: ¥; =c
Inl: c<k<e
“WR In3: ¢ #£ 2%

Inl In2: N; <Ny +¢c <Ny +k;
Inc: N; and ¢ are incomparable

L BS: there exists a Bernstein set

FU: there exists a free ultrafilter on w

‘WR: the set of R can be well-oredered

'V'S: there exists a selector for a Vitali set
wCH: there is no set X such that Xy < |X| < ¢
LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property

[m] = =
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If there is no selector for the Lebesgue decomposition and R; is
a regular cardinal, then X, is an inaccessible cardinal in
the constructible universe L.
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DA™



Regularity properties on the real line

- the next result was mentioned by J. Mycielski [1]

If there is no selector for the Lebesgue decomposition and R; is
a regular cardinal, then X, is an inaccessible cardinal in
the constructible universe L.

Since X, is not inaccessible in L in the Shelah’s above
mentioned model, we obtain
@ BP —» —LDe,
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- the next result was mentioned by J. Mycielski [1]

If there is no selector for the Lebesgue decomposition and R; is
a regular cardinal, then X, is an inaccessible cardinal in
the constructible universe L.

Since X, is not inaccessible in L in the Shelah’s above
mentioned model, we obtain
@ BP —» —LDe,

@ LDe -» WR.
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Diagram in which none of the indicated implications is provable
in the theory ZF + DC

-AC, Inc In3
-Wk
—LDe CH: ¥; =c
\ Inl: c<k<ec
AD LM
“WR In3: ¢ #£ 2%
PSP Inl In2: N; <Ny +¢c <Ny +k;
I Inc: N; and ¢ are incomparable

BS: there exists a Bernstein set
BP FU: there exists a free ultrafilter on w
—Lk ‘WR: the set of R can be well-oredered
'V'S: there exists a selector for a Vitali set

LDe: there exists a selector for Lebesgue decomp. wCH: there is no set X such that Ry < |X| < ¢

Lk: a set of cardinality k can be linearly ordered

LM: every set of R is Lebesgue measurable
PSP: every uncount. set of R contains a perfect set

BP: every set of R possesss the Baire property

[m] = =
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A topological space (X, O) is a Fréchet space iff
A =stl(A) = {limp_oo Xn @ (VN) X € A} for every set A C X.

DA™



A topological space (X, O) is a Fréchet space iff
A =tl(A) = {limy_oo Xn : (¥YN) Xy € A} for every set A C X.
Theorem (H. Herrlich)
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Theorem (H. Herrlich)
WAC holds true if and only if the real line is a Fréchet space.
i.e. In1 — Inc Vv In2
J. Mycielski's statement:

@ ¢ <t — (Nyg, careincomparable) V (X3 < Nj + ¢ < ¥; + £)

2% <V (m(2% > E) A (2N > B+ R AR B < 2% 4 p)
@ -Lk — In4,
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WAC holds true if and only if the real line is a Fréchet space.
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A topological space (X, O) is a Fréchet space iff
A =stl(A) = {limp_oo Xn @ (VN) X € A} for every set A C X.
Theorem (H. Herrlich)

WAC holds true if and only if the real line is a Fréchet space.

@ ¢ <t — (Nyg, careincomparable) V (X3 < Nj + ¢ < ¥; + £)
i.e. In1 — Inc Vv In2
J. Mycielski's statement:

2% <V (m(2% > E) A (2N > B+ R AR B < 2% 4 p)
@ -Lk — In4,

@ Ind — Ny < Ng +¢c< Ny + 8§

@ c<t— (c<2M)Vving, ie.Inl — In3VIn4.

m]
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