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Regularity properties on the real line

Some weak forms of the Axiom of Choice:

The Weak Axiom of Choice wAC says that for any
countable family of non-empty subsets of a given set of
power 2ℵ0 there exists a choice function.

The Axiom of Dependent Choice DC says that for any
binary relation R on a non-empty set A such that for every
a ∈ A there exists a b ∈ A such that aRb, for every a ∈ A
there exists a function f : ω −→ A satisfying f (n)Rf (n + 1)
for any n ∈ ω and f (0) = a.

Then
AC → DC, DC → wAC

and the implications cannot be reversed
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A subset B ⊆ X is called a Bernstein set if |B| = |X \ B| = c

and neither B nor X \ B contains a perfect subset.

Theorem 1 (F. Bernstein [1] )

If an uncountable Polish space X can be well-ordered, then
there exists a Bernstein set B ⊆ X , i.e. WR → BS.

- a Bernstein set is a classical example of a non-measurable set

Theorem 2 (F. Bernstein [1] )

A Bernstein set does not possess the Baire Property and is not
Lebesgue measurable, i.e. BP → ¬BS and LM → ¬BS.
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LM

BP

¬BS

¬WR

BS: there exists a Bernstein set

WR: the set of R can be well-oredered

LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property
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Let 〈X , +, 0〉 be additive group. A set V ⊆ X is called a Vitali
set if there exists a countable dense subset D such that

(∀x , y) ((x , y ∈ V ∧ x 6= y) → x − y /∈ D),

(∀x ∈ X )(∃y ∈ V ) x − y ∈ D.

Note that, for every x ∈ X there exists exactly one real y ∈ V
such that x − y ∈ D.
- the family {{y ∈ X : x − y ∈ D} : x ∈ X} is a decomposition
of the set X and we call it the Vitali decomposition
- if there exists a selector for the Vitali decomposition then
the selector is a Vitali set
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Theorem 3 (G. Vitali [4])

If the real line can be well-ordered, then there exists a Vitali set,
i.e. WR → VS.

- a Vitali set is an another example of a non-measurable set

Theorem 4 (G. Vitali [4])

A Vitali set does not possess the Baire Property and is not
Lebesgue measurable, i.e. BP → ¬VS and LM → ¬VS.
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LM

BP

¬BS

¬WR
¬VS

BS: there exists a Bernstein set

WR: the set of R can be well-oredered

LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property

VS: there exists a selector for a Vitali set
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Let us consider the family P(ω) of all subsets of ω. P(ω) is
a Boolean algebra and the set

Fin = {A ⊆ ω : |A| < ℵ0}

of all finite subsets of ω is an ideal of algebra P(ω).

we can consider the quotient algebra P(ω)/Fin and we
denote by k its cardinality

k = |P(ω)/Fin|

we define relation ≪ between cardinalities of sets as

|A| ≪ |B| ≡ (∃f ) (f : B onto
−→ A)
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Theorem 5

The inequalities 2ℵ0 ≤ k and k ≪ 2ℵ0 hold true. Moreover, if
the set P(ω) can be well-ordered, then k = 2ℵ0 , i.e.
In1 → ¬WR.

Note the following: if A, B are sets such that |A| ≤ |B|, |B| ≪ |A|
then A can be well-ordered if and only if B can be well-ordered.

Corollary 6

A set of cardinality k can be well-ordered if and only if the set
of reals R can be well-ordered.

Corollary 7

If a set of cardinality k cannot be linearly ordered, then
ℵ1 < ℵ1 + c < ℵ1 + k, i.e. ¬Lk → In2.
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LM

BP

¬BS

¬WR
¬VS

In1

In2

¬Lk

¬Wk

BS: there exists a Bernstein set

WR: the set of R can be well-oredered

LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property

VS: there exists a selector for a Vitali set

In1: c < k ≪ c

Lk: a set of cardinality k can be linearly ordered

Wk: a set of cardinality k can be well-ordered

In2: ℵ1 < ℵ1 + c < ℵ1 + k
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Vitali set V on the Cantor space ω2

(∀x , y) ((x , y ∈ V ∧ x 6= y) → {n : x(n) 6= y(n)} ∈ [ω]ω,

(∀x ∈ ω2)(∃y ∈ V ) {n : x(n) 6= y(n)} ∈ [ω]<ω.

- the family

{{y ∈ ω2 : {n : x(n) 6= y(n)} ∈ [ω]<ω} : x ∈ ω2}

is a Vitali decomposition of the Cantor space ω2
- if f : P(ω) → ω2 is a function such that f (A) = χ(A) for any
A ⊆ ω, then

f : P(ω)/Fin
1−1
→
onto

ω2/Fin

Fact

A Vitali set V on Cantor space ω2 is a set of cardinality k.
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Regularity properties on the real line

A set A ⊆ T is called a tail-set if the set {r ∈ T : A + r = A}
contains a countable subset dense in T.

Theorem 10 (J. Mycielski [1])

If AC2 holds true, then there exist a Lebesgue non-measurable
set of reals and a set which does not possess the Baire
Property, i.e. LM → ¬AC2 and BP → ¬AC2.

- similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality k is linearly ordered, then there exist
a Lebesgue non-measurable set of reals and a set which does
not possess the Baire Property, i.e. LM → ¬Lk and BP → ¬Lk .



Regularity properties on the real line

A set A ⊆ T is called a tail-set if the set {r ∈ T : A + r = A}
contains a countable subset dense in T.

Theorem 10 (J. Mycielski [1])

If AC2 holds true, then there exist a Lebesgue non-measurable
set of reals and a set which does not possess the Baire
Property, i.e. LM → ¬AC2 and BP → ¬AC2.

- similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality k is linearly ordered, then there exist
a Lebesgue non-measurable set of reals and a set which does
not possess the Baire Property, i.e. LM → ¬Lk and BP → ¬Lk .



Regularity properties on the real line

A set A ⊆ T is called a tail-set if the set {r ∈ T : A + r = A}
contains a countable subset dense in T.

Theorem 10 (J. Mycielski [1])

If AC2 holds true, then there exist a Lebesgue non-measurable
set of reals and a set which does not possess the Baire
Property, i.e. LM → ¬AC2 and BP → ¬AC2.

- similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality k is linearly ordered, then there exist
a Lebesgue non-measurable set of reals and a set which does
not possess the Baire Property, i.e. LM → ¬Lk and BP → ¬Lk .



Regularity properties on the real line

A set A ⊆ T is called a tail-set if the set {r ∈ T : A + r = A}
contains a countable subset dense in T.

Theorem 10 (J. Mycielski [1])

If AC2 holds true, then there exist a Lebesgue non-measurable
set of reals and a set which does not possess the Baire
Property, i.e. LM → ¬AC2 and BP → ¬AC2.

- similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality k is linearly ordered, then there exist
a Lebesgue non-measurable set of reals and a set which does
not possess the Baire Property, i.e. LM → ¬Lk and BP → ¬Lk .



Regularity properties on the real line

A set A ⊆ T is called a tail-set if the set {r ∈ T : A + r = A}
contains a countable subset dense in T.

Theorem 10 (J. Mycielski [1])

If AC2 holds true, then there exist a Lebesgue non-measurable
set of reals and a set which does not possess the Baire
Property, i.e. LM → ¬AC2 and BP → ¬AC2.

- similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality k is linearly ordered, then there exist
a Lebesgue non-measurable set of reals and a set which does
not possess the Baire Property, i.e. LM → ¬Lk and BP → ¬Lk .



Regularity properties on the real line

LM

BP

¬BS

¬WR
¬VS

In1

In2

¬Lk

¬Wk

¬AC2

BS: there exists a Bernstein set

WR: the set of R can be well-oredered

LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property

VS: there exists a selector for a Vitali set

In1: c < k ≪ c

Lk: a set of cardinality k can be linearly ordered

Wk: a set of cardinality k can be well-ordered

In2: ℵ1 < ℵ1 + c < ℵ1 + k;
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A free ultrafilter on ω is a filter J ⊆ P(ω) not containing any
finite set and for every A ⊆ ω, either A ∈ J or ω \ A ∈ J .

Theorem 12

If the real line can be well-ordered, then there exists a free
ultrafilter on ω, i.e. WR → FU.

Theorem 13 (W. Sierpiński [1])

A free ultrafilter on ω is a Lebesgue non-measurable set and
does not possess the Baire Property, i.e. LM → ¬FU and
BP → ¬FU.
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Regularity properties on the real line

- some kind of duality between measure and category,
J. Raisonnier [3] proved in the theory ZF + wAC that

Theorem 14 (J. Raisonnier)

If ℵ1 ≤ c, then there is a Lebesgue non-measurable set, i.e.
LM → Inc .

parallel theorem on the Baire Property is not provable in
ZF + wAC .
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Theorem 15

If wCH holds true, then the following are equivalent:

WR the set of reals R can be well-ordered;

¬Inc ℵ1 and c are comparable, i.e ℵ1 ≤ c;

LDe there exists a selector for the Lebesgue decomposition.

If ℵ1 and c are incomparable, then c = 2ℵ0 < 2ℵ1 . Thus, we
get Inc → In3.

from ℵ1 < 2ℵ1 we have wCH → In3
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In2: ℵ1 < ℵ1 + c < ℵ1 + k;

FU: there exists a free ultrafilter on ω

LDe: there exists a selector for Lebesgue decomp.
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wCH: there is no set X such that ℵ0 < |X| < c

In3: c 6= 2ℵ1
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Theorem 16

If every uncountable set of reals contains a perfect subset, then
there is no set X such that ℵ0 < |X | < c, i.e. PSP → wCH.

Theorem 17

If every uncountable set of reals contains a perfect subset, then
ℵ1 and c are incomparable, i.e. PSP → Inc .
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Regularity properties on the real line

Negative implications:

- according to Theorem 15

wCH ∧ WR ≡ CH

- by K. Gödel constructible universe L we have a model in which

wCH 9 ¬WR, In3 9 ¬WR,

wCH 9 Inc , In3 9 Inc ,

wCH 9 ¬LDe, In3 9 ¬LDe.
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Regularity properties on the real line

The Axiom of Determinacy AD states that every two-person
games of length ω in which both players choose integers is
determined; that is, one of the two players has a winning
strategy.

AD was proposed as an alternative to the Axiom of Choice
by J. Mycielski and H. Steinhaus [2], but it is not possible to
prove the consistency of ZF + AD with respect to ZF,

the consistency strength of AD is indicated as much high
in due to results by Solovay and mainly by T. Jech [4].
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Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then

a) wAC , PSP, LM, BP hold true,

b) AC fails,

c) there exists a surjection of P(ω) onto P(ω1), i.e.
2ℵ1 ≪ c = 2ℵ0 .
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In3

LM

BP

¬BS

¬WR
¬VS

In1

In2

¬Lk

¬Wk

¬AC2

¬FU

wCH

Inc

¬LDe

PSP

wAC

¬CH
AD

BS: there exists a Bernstein set

WR: the set of R can be well-oredered

LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property

VS: there exists a selector for a Vitali set

In1: c < k ≪ c

Lk: a set of cardinality k can be linearly ordered

In2: ℵ1 < ℵ1 + c < ℵ1 + k;

FU: there exists a free ultrafilter on ω

LDe: there exists a selector for Lebesgue decomp.

Inc: ℵ1 and c are incomparable

wCH: there is no set X such that ℵ0 < |X| < c

In3: c 6= 2ℵ1

CH: ℵ1 =c

PSP: every uncount. set of R contains a perfect set
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Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then

a) wAC , PSP, LM, BP hold true,

b) AC fails,

c) there exists a surjection of P(ω) onto P(ω1), i.e.
2ℵ1 ≪ c = 2ℵ0 .

By R. Solovay [2] and by S. Shelah [4] the following theories
are equiconsistent

(a) ZFC + IC;1

(b) ZFC + every Σ1
3-set of reals is Lebesgue measurable;

(c) ZF + DC + LM.

1IC denote statement “there exists a strongly inaccessible cardinal”, i.e.
a limit regular cardinal κ such that for any λ < κ we have 2λ

< κ.
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Theorem 19

If wAC holds true then ℵ1 is a regular cardinal.

- by the Shelah’s argument in his Remark (1) of [4], the theory

ZF + wAC +LM

is equiconsistent with the previous theories (a)-(c).
- S. Shelah proved that the consistency of ZF implies
the consistency of ZF + wAC + BP, i.e. the theories

(d) ZF

(e) ZF + wAC + BP

are equiconsistent.
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Regularity properties on the real line

by Shelah’s model the consistency strength of
ZF + wAC + LM is strictly greater than that of
ZF + wAC + BP,

by Solovay’s model the consistency of ZF + wAC + LM is
greater than that of ZF + wAC + PSP.

Thus, a natural question arises:

Question

Is consistency of the existence of an inaccessible cardinal
necessary for PSP?

We give a positive answer to this question :)
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Theorem 20

If PSP holds true and ℵ1 is a regular cardinal, then ℵ1 is
an inaccessible cardinal in the constructible universe L.

the theory ZF+ℵ1 is regular +PSP is equiconsistent with
the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory
ZF + wCH, we obtain

the consistency of ZF + wAC + PSP is strictly greater than
that of ZF + wAC + wCH.

S. Shelah [4] showed that Theorem 14 on the Baire Property is
not provable in the theory ZF + DC.
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Thus, we get:

BP 9 Inc ,

since BP implies ¬WR, then ¬WR 9 Inc ,

according to Theorem 15 we get BP 9 wCH,

by Theorem 16 we know that PSP → wCH, therefore
BP 9 PSP,

however, according to Theorem 14 we have BP 9 LM.
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Diagram in which none of the indicated implications is provable
in the theory ZF + DC

In3

LM

BP

¬BS

¬WR
¬VS

In1

In2

¬Lk

¬Wk

¬AC2

¬FU

wCH

Inc

¬LDe

PSP

wAC

¬CH
AD

BS: there exists a Bernstein set

WR: the set of R can be well-oredered

LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property

VS: there exists a selector for a Vitali set

In1: c < k ≪ c

Lk: a set of cardinality k can be linearly ordered

In2: ℵ1 < ℵ1 + c < ℵ1 + k;

FU: there exists a free ultrafilter on ω

LDe: there exists a selector for Lebesgue decomp.

Inc: ℵ1 and c are incomparable

wCH: there is no set X such that ℵ0 < |X| < c

In3: c 6= 2ℵ1

CH: ℵ1 =c

PSP: every uncount. set of R contains a perfect set
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- the next result was mentioned by J. Mycielski [1]

Theorem 21

If there is no selector for the Lebesgue decomposition and ℵ1 is
a regular cardinal, then ℵ1 is an inaccessible cardinal in
the constructible universe L.

Since ℵ1 is not inaccessible in L in the Shelah’s above
mentioned model, we obtain

BP 9 ¬LDe,

LDe 9 WR.
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Regularity properties on the real line

A topological space 〈X ,O〉 is a Fréchet space iff
A = scl(A) = {limn→∞ xn : (∀n) xn ∈ A} for every set A ⊆ X .

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

c < k → (ℵ1, c are incomparable) ∨ (ℵ1 < ℵ1 + c < ℵ1 + k)
i.e. In1 → Inc ∨ In2

J. Mycielski’s statement:

In4:

2ℵ1 < k ∨ (¬(2ℵ1 ≥ k) ∧ ¬(2ℵ1 ≥ k + ℵ1) ∧ ℵ1 + k < 2ℵ1 + k)

¬Lk → In4,

In4 → ℵ1 < ℵ1 + c < ℵ1 + k,

c < k → (c < 2ℵ1) ∨ In4, i.e. In1 → In3 ∨ In4.
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