Regularity properties on the real line

Michal Staš

Department of Mathematics Faculty of Science P. J. Šafárik University

> 4. februar 2010 Hejnice

Sac

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{ℵ₀} there exists a choice function.
- The Axiom of Dependent Choice DC says that for any binary relation *R* on a non-empty set *A* such that for every *a* ∈ *A* there exists a *b* ∈ *A* such that *aRb*, for every *a* ∈ *A* there exists a function *f* : ω → *A* satisfying *f*(*n*)*Rf*(*n*+1) for any *n* ∈ ω and *f*(0) = *a*.

Then

$$AC \rightarrow DC$$
, $DC \rightarrow wAC$

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{ℵ₀} there exists a choice function.
- The Axiom of Dependent Choice DC says that for any binary relation *R* on a non-empty set *A* such that for every *a* ∈ *A* there exists a *b* ∈ *A* such that *aRb*, for every *a* ∈ *A* there exists a function *f* : ω → *A* satisfying *f*(*n*)*Rf*(*n*+1) for any *n* ∈ ω and *f*(0) = *a*.

Then

$\mathbf{AC} \rightarrow \mathbf{DC}, \quad \mathbf{DC} \rightarrow \mathbf{wAC}$

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{ℵ₀} there exists a choice function.
- The Axiom of Dependent Choice DC says that for any binary relation *R* on a non-empty set *A* such that for every *a* ∈ *A* there exists a *b* ∈ *A* such that *aRb*, for every *a* ∈ *A* there exists a function *f* : ω → A satisfying *f*(*n*)*Rf*(*n*+1) for any *n* ∈ ω and *f*(0) = *a*.

Then

$$\mathbf{AC} \rightarrow \mathbf{DC}, \quad \mathbf{DC} \rightarrow \mathbf{wAC}$$

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{ℵ₀} there exists a choice function.
- The Axiom of Dependent Choice DC says that for any binary relation *R* on a non-empty set *A* such that for every *a* ∈ *A* there exists a *b* ∈ *A* such that *aRb*, for every *a* ∈ *A* there exists a function *f* : ω → A satisfying *f*(*n*)*Rf*(*n*+1) for any *n* ∈ ω and *f*(0) = *a*.

Then

$AC \rightarrow DC$, $DC \rightarrow wAC$

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{ℵ₀} there exists a choice function.
- The Axiom of Dependent Choice DC says that for any binary relation *R* on a non-empty set *A* such that for every *a* ∈ *A* there exists a *b* ∈ *A* such that *aRb*, for every *a* ∈ *A* there exists a function *f* : ω → A satisfying *f*(*n*)*Rf*(*n*+1) for any *n* ∈ ω and *f*(0) = *a*.

Then

$\textbf{AC} \rightarrow \textbf{DC}, \quad \textbf{DC} \rightarrow \textbf{wAC}$

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space X can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. $WR \rightarrow BS$.

a Bernstein set is a classical example of a non-measurable set

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space X can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. **WR** \rightarrow **BS**.

- a Bernstein set is a classical example of a non-measurable set

A Bernstein set does not possess the Baire Property and is not Lebesgue measurable, i.e. $BP \rightarrow \neg BS$ and $LM \rightarrow \neg BS$.

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space *X* can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. **WR** \rightarrow **BS**.

a Bernstein set is a classical example of a non-measurable set

A Bernstein set does not possess the Baire Property and is not Lebesgue measurable, i.e. BP $\rightarrow \neg$ BS and LM $\rightarrow \neg$ BS.

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space *X* can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. **WR** \rightarrow **BS**.

- a Bernstein set is a classical example of a non-measurable set

Theorem 2 (F. Bernstein [1])

A Bernstein set does not possess the Baire Property and is not Lebesgue measurable, i.e. **BP** $\rightarrow \neg$ **BS** and **LM** $\rightarrow \neg$ **BS**.

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space *X* can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. **WR** \rightarrow **BS**.

- a Bernstein set is a classical example of a non-measurable set

Theorem 2 (F. Bernstein [1])

A Bernstein set does not possess the Baire Property and is not Lebesgue measurable, i.e. **BP** $\rightarrow \neg$ **BS** and **LM** $\rightarrow \neg$ **BS**.

LM: every set of R is Lebesgue measurable **BP**: every set of R possesss the Baire property

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x y \notin D),$
- $(\forall x \in X)(\exists y \in V) x y \in D.$

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the **Vitali decomposition**

 if there exists a selector for the Vitali decomposition then the selector is a Vitali set

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x y \notin D),$
- $(\forall x \in X)(\exists y \in V) x y \in D.$

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the **Vitali decomposition** - if there exists a selector for the Vitali decomposition then

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x y \notin D),$
- $(\forall x \in X)(\exists y \in V) x y \in D.$

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the **Vitali decomposition** - if there exists a selector for the Vitali decomposition then

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x y \notin D),$
- $(\forall x \in X)(\exists y \in V) x y \in D.$
- Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x y \in D$.
- the family $\{\{y \in X : x y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the **Vitali decomposition** - if there exists a selector for the Vitali decomposition then

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x y \notin D),$
- $(\forall x \in X)(\exists y \in V) x y \in D.$

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the **Vitali decomposition** - if there exists a selector for the Vitali decomposition then

• $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x - y \notin D),$

•
$$(\forall x \in X)(\exists y \in V) x - y \in D.$$

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the **Vitali decomposition** - if there exists a selector for the Vitali decomposition then the selector is a Vitali set

• $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x - y \notin D),$

•
$$(\forall x \in X)(\exists y \in V) x - y \in D.$$

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the **Vitali decomposition** - if there exists a selector for the Vitali decomposition then the selector is a Vitali set

• $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x - y \notin D),$

•
$$(\forall x \in X)(\exists y \in V) x - y \in D.$$

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the **Vitali decomposition**

- if there exists a selector for the Vitali decomposition then the selector is a Vitali set

• $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow x - y \notin D),$

•
$$(\forall x \in X)(\exists y \in V) x - y \in D.$$

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x - y \in D$.

- the family $\{\{y \in X : x - y \in D\} : x \in X\}$ is a decomposition of the set X and we call it the **Vitali decomposition**

(ロ) (同) (三) (三) (三) (0) (0)

- if there exists a selector for the Vitali decomposition then the selector is a Vitali set

If the real line can be well-ordered, then there exists a Vitali set, i.e. $\textbf{WR} \rightarrow \textbf{VS}.$

- a Vitali set is an another example of a non-measurable set

A Vitali set does not possess the Baire Property and is not Lebesgue measurable, i.e. $BP \rightarrow \neg VS$ and LM $\rightarrow \neg VS$.

If the real line can be well-ordered, then there exists a Vitali set, i.e. $\textbf{WR} \rightarrow \textbf{VS}.$

- a Vitali set is an another example of a non-measurable set

A Vitali set does not possess the Baire Property and is not Lebesgue measurable, i.e. $BP \rightarrow \neg VS$ and $LM \rightarrow \neg VS$.

500

• • •

If the real line can be well-ordered, then there exists a Vitali set, i.e. $\textbf{WR} \rightarrow \textbf{VS}.$

- a Vitali set is an another example of a non-measurable set

Theorem 4 (G. Vitali [4])

A Vitali set does not possess the Baire Property and is not Lebesgue measurable, i.e. **BP** $\rightarrow \neg$ **VS** and **LM** $\rightarrow \neg$ **VS**.

If the real line can be well-ordered, then there exists a Vitali set, i.e. $\textbf{WR} \rightarrow \textbf{VS}.$

- a Vitali set is an another example of a non-measurable set

Theorem 4 (G. Vitali [4])

A Vitali set does not possess the Baire Property and is not Lebesgue measurable, i.e. **BP** $\rightarrow \neg$ **VS** and **LM** $\rightarrow \neg$ **VS**.

Sac

990

WR: the set of R can be well-oredered **VS**: there exists a selector for a Vitali set

LM: every set of R is Lebesgue measurable BP: every set of R possesss the Baire property

 $\operatorname{Fin} = \{ A \subseteq \omega : |A| < \aleph_0 \}$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

we can consider the quotient algebra P(ω)/Fin and we denote by t its cardinality

 $\mathfrak{k} = |\mathcal{P}(\omega)/\mathrm{Fin}|$

 $|A| \ll |B| \equiv (\exists f) (f : B \xrightarrow{\text{onto}} A)$

 $\operatorname{Fin} = \{ A \subseteq \omega : |A| < \aleph_0 \}$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

we can consider the quotient algebra P(ω)/Fin and we denote by t its cardinality

 $\mathfrak{k} = |\mathcal{P}(\omega)/\mathrm{Fin}|$

• we define relation \ll between cardinalities of sets as

 $|A| \ll |B| \equiv (\exists f) (f : B \xrightarrow{\text{onto}} A)$

 $\mathsf{Fin} = \{ \mathsf{A} \subseteq \omega : |\mathsf{A}| < \aleph_{\mathsf{0}} \}$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

we can consider the quotient algebra P(ω)/Fin and we denote by t its cardinality

 $\mathfrak{k} = |\mathcal{P}(\omega)/\mathrm{Fin}|$

 $|A| \ll |B| \equiv (\exists f) (f : B \xrightarrow{\text{onto}} A)$

```
\operatorname{Fin} = \{ \boldsymbol{A} \subseteq \omega : |\boldsymbol{A}| < \aleph_0 \}
```

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

• we can consider the quotient algebra $\mathcal{P}(\omega)/\text{Fin}$ and we denote by \mathfrak{k} its cardinality

 $\mathfrak{k} = |\mathcal{P}(\omega)/\mathrm{Fin}|$

 $|A| \ll |B| \equiv (\exists f) (f : B \xrightarrow{\text{onto}} A)$

```
\operatorname{Fin} = \{ \boldsymbol{A} \subseteq \omega : |\boldsymbol{A}| < \aleph_0 \}
```

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

we can consider the quotient algebra P(ω)/Fin and we denote by t its cardinality

 $\mathfrak{k} = |\mathcal{P}(\omega)/\mathrm{Fin}|$

 $|A| \ll |B| \equiv (\exists f) (f : B \xrightarrow{\text{onto}} A)$

```
\operatorname{Fin} = \{ \boldsymbol{A} \subseteq \omega : |\boldsymbol{A}| < \aleph_0 \}
```

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

we can consider the quotient algebra P(ω)/Fin and we denote by t its cardinality

 $\mathfrak{k} = |\mathcal{P}(\omega)/\mathrm{Fin}|$

 $|A| \ll |B| \equiv (\exists f) (f : B \xrightarrow{\text{onto}} A)$

```
\operatorname{Fin} = \{ \boldsymbol{A} \subseteq \boldsymbol{\omega} : |\boldsymbol{A}| < \aleph_0 \}
```

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

we can consider the quotient algebra P(ω)/Fin and we denote by t its cardinality

$$\mathfrak{k} = |\mathcal{P}(\omega)/\mathrm{Fin}|$$

$$|A| \ll |B| \equiv (\exists f) (f : B \xrightarrow{\text{onto}} A)$$

```
\operatorname{Fin} = \{ \mathbf{A} \subseteq \omega : |\mathbf{A}| < \aleph_0 \}
```

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

we can consider the quotient algebra P(ω)/Fin and we denote by t its cardinality

$$\mathfrak{k} = |\mathcal{P}(\omega)/\mathrm{Fin}|$$

$$|A| \ll |B| \equiv (\exists f) (f : B \xrightarrow{\text{onto}} A)$$

Jac.

Theorem 5

The inequalities $2^{\aleph_0} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k} = 2^{\aleph_0}$, i.e. **In1** $\rightarrow \neg$ **WR**.

Note the following: if *A*, *B* are sets such that $|A| \le |B|, |B| \ll |A|$ then *A* can be well-ordered if and only if *B* can be well-ordered.

Theorem 5

The inequalities $2^{\aleph_0} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k} = 2^{\aleph_0}$, i.e. In1 $\rightarrow \neg$ WR.

Note the following: if *A*, *B* are sets such that $|A| \le |B|, |B| \ll |A|$ then *A* can be well-ordered if and only if *B* can be well-ordered.

The inequalities $2^{\aleph_0} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k} = 2^{\aleph_0}$, i.e. In1 $\rightarrow \neg$ WR.

Note the following: if *A*, *B* are sets such that $|A| \le |B|, |B| \ll |A|$ then *A* can be well-ordered if and only if *B* can be well-ordered.

A set of cardinality t can be well-ordered if and only if the set of reals it can be well-ordered.

If a set of cardinality t cannot be linearly ordered, then $\aleph_1 < \aleph_1 + c < \aleph_1 + t$, i.e. $\neg Lk \rightarrow In2$.

The inequalities $2^{\aleph_0} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k} = 2^{\aleph_0}$, i.e. **In1** $\rightarrow \neg$ **WR**.

Note the following: if *A*, *B* are sets such that $|A| \le |B|, |B| \ll |A|$ then *A* can be well-ordered if and only if *B* can be well-ordered.

A set of cardinality t can be well-ordered if and only if the set of reals R can be well-ordered.

If a set of cardinality t cannot be linearly ordered, then $\aleph_1 < \aleph_1 + \epsilon < \aleph_1 + t$, i.e. $\neg Lk \rightarrow ln2$.

The inequalities $2^{\aleph_0} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k} = 2^{\aleph_0}$, i.e. **In1** $\rightarrow \neg$ **WR**.

Note the following: if *A*, *B* are sets such that $|A| \le |B|, |B| \ll |A|$ then *A* can be well-ordered if and only if *B* can be well-ordered.

Corollary 6

A set of cardinality \mathfrak{k} can be well-ordered if and only if the set of reals \mathbb{R} can be well-ordered.

Corollary 7

If a set of cardinality \mathfrak{k} cannot be linearly ordered, then $\aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k}$, i.e. $\neg \mathbf{Lk} \rightarrow \mathbf{In2}$.

The inequalities $2^{\aleph_0} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k} = 2^{\aleph_0}$, i.e. **In1** $\rightarrow \neg$ **WR**.

Note the following: if *A*, *B* are sets such that $|A| \le |B|, |B| \ll |A|$ then *A* can be well-ordered if and only if *B* can be well-ordered.

Corollary 6

A set of cardinality \mathfrak{k} can be well-ordered if and only if the set of reals \mathbb{R} can be well-ordered.

Corollary 7

If a set of cardinality \mathfrak{k} cannot be linearly ordered, then $\aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k}$, i.e. $\neg \mathbf{Lk} \rightarrow \mathbf{In2}$.

The inequalities $2^{\aleph_0} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_0}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k} = 2^{\aleph_0}$, i.e. In1 $\rightarrow \neg$ WR.

Note the following: if *A*, *B* are sets such that $|A| \le |B|, |B| \ll |A|$ then *A* can be well-ordered if and only if *B* can be well-ordered.

Corollary 6

A set of cardinality \mathfrak{k} can be well-ordered if and only if the set of reals \mathbb{R} can be well-ordered.

Corollary 7

If a set of cardinality $\mathfrak k$ cannot be linearly ordered, then $\aleph_1 < \aleph_1 + \mathfrak c < \aleph_1 + \mathfrak k$, i.e. $\neg Lk \to In2.$

Wk: a set of cardinality k can be well-orderedLk: a set of cardinality k can be linearly ordered

LM: every set of R is Lebesgue measurable BP: every set of R possesss the Baire property

Sac

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^{\omega},$ • $(\forall x \in {}^{\omega}2)(\exists y \in V) \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}.$
- the family

$\{\{y \in {}^{\omega}2 : \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}\} : x \in {}^{\omega}2\}$

is a Vitali decomposition of the Cantor space ${}^{\omega}2$ - if $f : \mathcal{P}(\omega) \to {}^{\omega}2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f}:\mathcal{P}(\omega)/\mathrm{Fin}\stackrel{\mathsf{1-1}}{ o}{}_{\mathrm{onto}}^{\omega}\mathbf{2}/\mathrm{Fin}$$

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^{\omega},$ • $(\forall x \in {}^{\omega}2)(\exists y \in V) \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}.$
- the family

$\{\{y \in {}^{\omega}2 : \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}\} : x \in {}^{\omega}2\}$

is a Vitali decomposition of the Cantor space ^{ω}2 - if $f : \mathcal{P}(\omega) \to {}^{\omega}2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f}:\mathcal{P}(\omega)/\mathrm{Fin}\stackrel{\mathsf{1-1}}{ o}{}_{\mathrm{onto}}^{\omega}\mathbf{2}/\mathrm{Fin}$$

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^{\omega},$ • $(\forall x \in {}^{\omega}2)(\exists y \in V) \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}.$
- the family

$\{\{y \in {}^{\omega}2 : \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}\} : x \in {}^{\omega}2\}$

is a Vitali decomposition of the Cantor space ^{ω}2 - if $f : \mathcal{P}(\omega) \to {}^{\omega}2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f}:\mathcal{P}(\omega)/\mathrm{Fin}\stackrel{\mathsf{1-1}}{ o}{}_{\mathrm{onto}}^{\omega}\mathbf{2}/\mathrm{Fin}$$

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^{\omega},$
- $(\forall x \in {}^{\omega}2)(\exists y \in V) \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}.$
- the family

$$\{\{\mathbf{y}\in{}^{\omega}\mathbf{2}:\{\mathbf{n}:\mathbf{x}(\mathbf{n})\neq\mathbf{y}(\mathbf{n})\}\in[\omega]^{<\omega}\}:\mathbf{x}\in{}^{\omega}\mathbf{2}\}$$

is a Vitali decomposition of the Cantor space ^{ω}2 - if $f : \mathcal{P}(\omega) \to \mathbb{C}^2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f}:\mathcal{P}(\omega)/\mathrm{Fin}\stackrel{\mathsf{1-1}}{ o}{}_{\mathrm{onto}}^{\omega}\mathbf{2}/\mathrm{Fin}$$

Sac

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^{\omega},$
- $(\forall x \in {}^{\omega}2)(\exists y \in V) \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}.$
- the family

$$\{\{\mathbf{y}\in{}^{\omega}\mathbf{2}:\{\mathbf{n}:\mathbf{x}(\mathbf{n})\neq\mathbf{y}(\mathbf{n})\}\in[\omega]^{<\omega}\}:\mathbf{x}\in{}^{\omega}\mathbf{2}\}$$

is a Vitali decomposition of the Cantor space ^{ω}2 - if $f : \mathcal{P}(\omega) \to \mathbb{C}^2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f}:\mathcal{P}(\omega)/\mathrm{Fin}\stackrel{\mathsf{1-1}}{ o}{\overset{\omega}{ o}}\mathbf{2}/\mathrm{Fin}$$

Sac

A Vitali set V on Cantor space ²2 is a set of cardinality I

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^{\omega},$
- $(\forall x \in {}^{\omega}2)(\exists y \in V) \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}.$
- the family

$$\{\{\mathbf{y}\in{}^{\omega}\mathbf{2}:\{\mathbf{n}:\mathbf{x}(\mathbf{n})\neq\mathbf{y}(\mathbf{n})\}\in[\omega]^{<\omega}\}:\mathbf{x}\in{}^{\omega}\mathbf{2}\}$$

is a Vitali decomposition of the Cantor space ^{ω}2 - if $f : \mathcal{P}(\omega) \to {}^{\omega}$ 2 is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f}: \mathcal{P}(\omega)/\mathrm{Fin} \stackrel{\mathsf{1-1}}{\to}_{\mathrm{onto}}^{\omega} \mathsf{2}/\mathrm{Fin}$$

Sac

A Vitali set V on Cantor space ²² is a set of cardinality.

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^{\omega},$
- $(\forall x \in {}^{\omega}2)(\exists y \in V) \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}.$
- the family

$$\{\{\mathbf{y}\in{}^{\omega}\mathbf{2}:\{\mathbf{n}:\mathbf{x}(\mathbf{n})\neq\mathbf{y}(\mathbf{n})\}\in[\omega]^{<\omega}\}:\mathbf{x}\in{}^{\omega}\mathbf{2}\}$$

is a Vitali decomposition of the Cantor space ${}^{\omega}2$ - if $f : \mathcal{P}(\omega) \to {}^{\omega}2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f}: \mathcal{P}(\omega)/\mathrm{Fin} \stackrel{1-1}{\underset{\mathrm{onto}}{\longrightarrow}} {}^{\omega}2/\mathrm{Fin}$$

Fact A Vitali set V on Cantor space $^{\omega}2$ is a set of cardinality \mathfrak{k} .

Sac

- $(\forall x, y) ((x, y \in V \land x \neq y) \rightarrow \{n : x(n) \neq y(n)\} \in [\omega]^{\omega},$
- $(\forall x \in {}^{\omega}2)(\exists y \in V) \{n : x(n) \neq y(n)\} \in [\omega]^{<\omega}.$
- the family

$$\{\{\mathbf{y}\in{}^{\omega}\mathbf{2}:\{\mathbf{n}:\mathbf{x}(\mathbf{n})\neq\mathbf{y}(\mathbf{n})\}\in[\omega]^{<\omega}\}:\mathbf{x}\in{}^{\omega}\mathbf{2}\}$$

is a Vitali decomposition of the Cantor space ^{ω}2 - if $f : \mathcal{P}(\omega) \to {}^{\omega}2$ is a function such that $f(A) = \chi(A)$ for any $A \subseteq \omega$, then

$$\overline{f}: \mathcal{P}(\omega)/\mathrm{Fin} \stackrel{1-1}{\underset{\mathrm{onto}}{\longrightarrow}} {}^{\omega}2/\mathrm{Fin}$$

Sac

Fact

A Vitali set V on Cantor space $^{\omega}2$ is a set of cardinality \mathfrak{k} .

Vitali set on the circle T for the set of all dyadic numbers D
Vitali decomposition: T/D = {{y ∈ T : x − y ∈ D} : x ∈ T}

 if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality t

Vitali set on the circle ${\mathbb T}$ for the set of all rational numbers ${\mathbb Q}$

 $\mathbb{T}/\mathbb{Q}\cong(\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

 $\mathfrak{k} = leph_0. |\mathbb{T}/\mathbb{Q}|$

Vitali set on the circle T for the set of all dyadic numbers D
Vitali decomposition: T/D = {{y ∈ T : x − y ∈ D} : x ∈ T} *f* : ^ω2/Fin ^{1−1}/→ T/D

• if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality t

Vitali set on the circle ${\mathbb T}$ for the set of all rational numbers ${\mathbb Q}$

 $\mathbb{T}/\mathbb{Q}\cong (\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

 $\mathfrak{k} = leph_0. |\mathbb{T}/\mathbb{Q}|$

Vitali set on the circle T for the set of all dyadic numbers D
Vitali decomposition: T/D = {{y ∈ T : x − y ∈ D} : x ∈ T}

$$f: {}^{\omega}2/\mathrm{Fin} \stackrel{1-1}{\underset{\mathrm{onto}}{\longrightarrow}} \mathbb{T}/\mathbb{D}$$

• if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality *t*

Vitali set on the circle ${\mathbb T}$ for the set of all rational numbers ${\mathbb Q}$

 $\mathbb{T}/\mathbb{Q}\cong(\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

 $\mathfrak{k} = leph_0.|\mathbb{T}/\mathbb{Q}|$

• Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{ \{ y \in \mathbb{T} : x - y \in \mathbb{D} \} : x \in \mathbb{T} \}$

$$f: {}^{\omega}2/\mathrm{Fin} \stackrel{1-1}{\underset{\mathrm{onto}}{\longrightarrow}} \mathbb{T}/\mathbb{D}$$

• if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality t

Vitali set on the circle ${\mathbb T}$ for the set of all rational numbers ${\mathbb Q}$

 $\mathbb{T}/\mathbb{Q}\cong(\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

٩

 $\mathfrak{k} = leph_0. |\mathbb{T}/\mathbb{Q}|$

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{ \{ y \in \mathbb{T} : x y \in \mathbb{D} \} : x \in \mathbb{T} \}$
 - $f: {}^{\omega}2/\mathrm{Fin} \stackrel{1-1}{\overset{\longrightarrow}{\to}} \mathbb{T}/\mathbb{D}$
- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality t

Vitali set on the circle ${\mathbb T}$ for the set of all rational numbers ${\mathbb Q}$

 $\mathbb{T}/\mathbb{Q}\cong(\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

٩

 $\mathfrak{k} = leph_0. |\mathbb{T}/\mathbb{Q}|$

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{ \{ y \in \mathbb{T} : x y \in \mathbb{D} \} : x \in \mathbb{T} \}$
 - $f: {}^{\omega}2/\mathrm{Fin} \stackrel{1-1}{\underset{\mathrm{onto}}{\longrightarrow}} \mathbb{T}/\mathbb{D}$
- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality t

Vitali set on the circle ${\mathbb T}$ for the set of all rational numbers ${\mathbb Q}$

 $\mathbb{T}/\mathbb{Q}\cong(\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

٩

$$\mathfrak{k} = leph_0. |\mathbb{T}/\mathbb{Q}|$$

nan

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{ \{ y \in \mathbb{T} : x y \in \mathbb{D} \} : x \in \mathbb{T} \}$
 - $f: {}^{\omega}2/\mathrm{Fin} \stackrel{1-1}{\underset{\mathrm{onto}}{\longrightarrow}} \mathbb{T}/\mathbb{D}$
- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality t

Vitali set on the circle ${\mathbb T}$ for the set of all rational numbers ${\mathbb Q}$

 $\mathbb{T}/\mathbb{Q}\cong(\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

٩

$$\mathfrak{k} = leph_0. |\mathbb{T}/\mathbb{Q}|$$

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{ \{ y \in \mathbb{T} : x y \in \mathbb{D} \} : x \in \mathbb{T} \}$
 - $f: {}^{\omega}2/\mathrm{Fin} \stackrel{1-1}{\underset{\mathrm{onto}}{\longrightarrow}} \mathbb{T}/\mathbb{D}$
- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality t

Vitali set on the circle ${\mathbb T}$ for the set of all rational numbers ${\mathbb Q}$

 $\mathbb{T}/\mathbb{Q}\cong(\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

٩

$$\mathfrak{k} = leph_0. |\mathbb{T}/\mathbb{Q}|$$

- Vitali decomposition: $\mathbb{T}/\mathbb{D} = \{ \{ y \in \mathbb{T} : x y \in \mathbb{D} \} : x \in \mathbb{T} \}$
 - $f: {}^{\omega}2/\mathrm{Fin} \stackrel{1-1}{\underset{\mathrm{onto}}{\longrightarrow}} \mathbb{T}/\mathbb{D}$
- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality t

Vitali set on the circle ${\mathbb T}$ for the set of all rational numbers ${\mathbb Q}$

 $\mathbb{T}/\mathbb{Q}\cong(\mathbb{T}/\mathbb{D})/(\mathbb{Q}/\mathbb{D})$

Thus,

٩

$$\mathfrak{k} = \aleph_0.|\mathbb{T}/\mathbb{Q}|$$

Theorem 10 (J. Mycielski [1])

If AC₂ holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. LM $\rightarrow \neg$ AC₂ and BP $\rightarrow \neg$ AC₂.

similarly by the same argument we have

Theorem 10 (J. Mycielski [1])

If AC₂ holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. LM $\rightarrow \neg$ AC₂ and BP $\rightarrow \neg$ AC₂.

- similarly by the same argument we have

If a set of cardinality t is linearly ordered, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. LM $\rightarrow \neg$ Lk and BP $\rightarrow \neg$ Lk

Theorem 10 (J. Mycielski [1])

If AC_2 holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $LM \rightarrow \neg AC_2$ and $BP \rightarrow \neg AC_2$.

similarly by the same argument we have

If a set of cardinality t is linearly ordered, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. LM $\rightarrow \neg$ Lk and BP $\rightarrow \neg$ Lk.

Theorem 10 (J. Mycielski [1])

If AC_2 holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $LM \rightarrow \neg AC_2$ and $BP \rightarrow \neg AC_2$.

- similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality \mathfrak{k} is linearly ordered, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. LM $\rightarrow \neg$ Lk and BP $\rightarrow \neg$ Lk.

Theorem 10 (J. Mycielski [1])

If AC_2 holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $LM \rightarrow \neg AC_2$ and $BP \rightarrow \neg AC_2$.

- similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality \mathfrak{k} is linearly ordered, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. LM $\rightarrow \neg$ Lk and BP $\rightarrow \neg$ Lk.

Wk: a set of cardinality k can be well-orderedLk: a set of cardinality k can be linearly ordered

LM: every set of R is Lebesgue measurable **BP**: every set of R possesss the Baire property

If the real line can be well-ordered, then there exists a free ultrafilter on ω , i.e. WR \rightarrow FU.

A free ultrafilter on ω is a Lebesgue non-measurable set and does not possess the Baire Property, i.e. LM $\rightarrow \neg$ FU and BP $\rightarrow \neg$ FU.

Theorem 12

If the real line can be well-ordered, then there exists a free ultrafilter on ω , i.e. **WR** \rightarrow **FU**.

Theorem 13 (W. Sierpiński [1])

A free ultrafilter on ω is a Lebesgue non-measurable set and does not possess the Baire Property, i.e. **LM** $\rightarrow \neg$ **FU** and **BP** $\rightarrow \neg$ **FU**.

Theorem 12

If the real line can be well-ordered, then there exists a free ultrafilter on ω , i.e. **WR** \rightarrow **FU**.

Theorem 13 (W. Sierpiński [1])

A free ultrafilter on ω is a Lebesgue non-measurable set and does not possess the Baire Property, i.e. **LM** $\rightarrow \neg$ **FU** and **BP** $\rightarrow \neg$ **FU**.

Theorem 12

If the real line can be well-ordered, then there exists a free ultrafilter on ω , i.e. **WR** \rightarrow **FU**.

Theorem 13 (W. Sierpiński [1])

A free ultrafilter on ω is a Lebesgue non-measurable set and does not possess the Baire Property, i.e. **LM** $\rightarrow \neg$ **FU** and **BP** $\rightarrow \neg$ **FU**.

Sac

Wk: a set of cardinality k can be well-orderedLk: a set of cardinality k can be linearly ordered

LM: every set of R is Lebesgue measurable BP: every set of R possess the Baire property

Sac

some kind of duality between measure and category,
 J. Raisonnier [3] proved in the theory **ZF** + **wAC** that

If $\aleph_1 \leq \mathfrak{c},$ then there is a Lebesgue non-measurable set, i.e. $LM \rightarrow \text{Inc}.$

 parallel theorem on the Baire Property is not provable in ZF + wAC.

< 口 > < 何 >

 $\neg \circ \land$

some kind of duality between measure and category, J. Raisonnier [3] proved in the theory ZF + wAC that

If $\aleph_1 \leq \mathfrak{c},$ then there is a Lebesgue non-measurable set, i.e. LM \rightarrow Inc.

 parallel theorem on the Baire Property is not provable in ZF + wAC.

Sac

- some kind of duality between measure and category, J. Raisonnier [3] proved in the theory ${\bf ZF} + {\bf wAC}$ that

Theorem 14 (J. Raisonnier)

If $\aleph_1 \leq \mathfrak{c},$ then there is a Lebesgue non-measurable set, i.e. LM \to Inc.

parallel theorem on the Baire Property is not provable in ZF + wAC.

- some kind of duality between measure and category,

J. Raisonnier [3] proved in the theory $\mathbf{ZF} + \mathbf{wAC}$ that

Theorem 14 (J. Raisonnier)

If $\aleph_1 \leq \mathfrak{c},$ then there is a Lebesgue non-measurable set, i.e. $LM \rightarrow Inc.$

• parallel theorem on the Baire Property is not provable in **ZF** + **wAC**.

ヘロト ヘアト ヘヨト ヘヨト

- some kind of duality between measure and category,
- J. Raisonnier [3] proved in the theory **ZF** + **wAC** that

Theorem 14 (J. Raisonnier)

If $\aleph_1 \leq \mathfrak{c},$ then there is a Lebesgue non-measurable set, i.e. $LM \rightarrow Inc.$

 parallel theorem on the Baire Property is not provable in ZF + wAC.

Jac.

Wk: a set of cardinality k can be well-orderedLk: a set of cardinality k can be linearly ordered

LM: every set of R is Lebesgue measurable BP: every set of R possess the Baire property

Sac

< 口 > < 同 >

If **wCH** holds true, then the following are equivalent:

- WR the set of reals ${\mathbb R}$ can be well-ordered;
 - and clare comparable, i.e $\lambda_{\rm f} \leq c_{\rm c}$
 - there exists a selector for the Lebesgue decomposition.
 - If ℵ₁ and c are incomparable, then c = 2^{ℵ0} < 2^{ℵ1}. Thus, we get Inc → In3.

If wCH holds true, then the following are equivalent:

WR the set of reals \mathbb{R} can be well-ordered;

 \neg Inc \aleph_1 and c are comparable, i.e $\aleph_1 \leq c$;

LDe there exists a selector for the Lebesgue decomposition.

If ℵ₁ and c are incomparable, then c = 2^{ℵ0} < 2^{ℵ1}. Thus, we get Inc → In3.

If wCH holds true, then the following are equivalent:

WR the set of reals \mathbb{R} can be well-ordered;

 \neg **Inc** \aleph_1 and \mathfrak{c} are comparable, i.e $\aleph_1 \leq \mathfrak{c}$;

LDe there exists a selector for the Lebesgue decomposition.

If ℵ₁ and c are incomparable, then c = 2^{ℵ0} < 2^{ℵ1}. Thus, we get Inc → In3.

If wCH holds true, then the following are equivalent:

WR the set of reals \mathbb{R} can be well-ordered;

 \neg Inc \aleph_1 and \mathfrak{c} are comparable, i.e $\aleph_1 \leq \mathfrak{c}$;

LDe there exists a selector for the Lebesgue decomposition.

If ℵ₁ and c are incomparable, then c = 2^{ℵ0} < 2^{ℵ1}. Thus, we get Inc → In3.

If wCH holds true, then the following are equivalent:

WR the set of reals \mathbb{R} can be well-ordered;

 \neg **Inc** \aleph_1 and \mathfrak{c} are comparable, i.e $\aleph_1 \leq \mathfrak{c}$;

LDe there exists a selector for the Lebesgue decomposition.

If ℵ₁ and c are incomparable, then c = 2^{ℵ0} < 2^{ℵ1}. Thus, we get Inc → In3.

ヘロト ヘアト ヘヨト ヘヨト

If wCH holds true, then the following are equivalent:

WR the set of reals \mathbb{R} can be well-ordered;

 \neg **Inc** \aleph_1 and \mathfrak{c} are comparable, i.e $\aleph_1 \leq \mathfrak{c}$;

LDe there exists a selector for the Lebesgue decomposition.

If ℵ₁ and c are incomparable, then c = 2^{ℵ₀} < 2^{ℵ₁}. Thus, we get Inc → In3.
from ℵ₁ < 2^{ℵ₁} we have wCH → In3

If wCH holds true, then the following are equivalent:

WR the set of reals \mathbb{R} can be well-ordered;

 \neg **Inc** \aleph_1 and \mathfrak{c} are comparable, i.e $\aleph_1 \leq \mathfrak{c}$;

LDe there exists a selector for the Lebesgue decomposition.

• If \aleph_1 and \mathfrak{c} are incomparable, then $\mathfrak{c} = 2^{\aleph_0} < 2^{\aleph_1}$. Thus, we get Inc \rightarrow In3.

If wCH holds true, then the following are equivalent:

WR the set of reals \mathbb{R} can be well-ordered;

 \neg **Inc** \aleph_1 and \mathfrak{c} are comparable, i.e $\aleph_1 \leq \mathfrak{c}$;

LDe there exists a selector for the Lebesgue decomposition.

• If \aleph_1 and \mathfrak{c} are incomparable, then $\mathfrak{c} = 2^{\aleph_0} < 2^{\aleph_1}$. Thus, we get **Inc** \rightarrow **In3**.

In1: $c < k \ll c$ In3: $c \neq 2^{\aleph_1}$

Sac

Inc: \aleph_1 and *c* are incomparable BS: there exists a Bernstein set **FU**: there exists a free ultrafilter on ω WR: the set of R can be well-oredered VS: there exists a selector for a Vitali set **wCH**: there is no set X such that $\aleph_0 < |X| < c$ LM: every set of R is Lebesgue measurable **BP**: every set of R possesss the Baire property

O > <
 O > <
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

LDe: there exists a selector for Lebesgue decomp. Lk: a set of cardinality k can be linearly ordered

In1: $c < k \ll c$ In3: $c \neq 2^{\aleph_1}$

Sac

Inc: \aleph_1 and *c* are incomparable BS: there exists a Bernstein set **FU**: there exists a free ultrafilter on ω WR: the set of R can be well-oredered VS: there exists a selector for a Vitali set wCH: there is no set X such that $\aleph_0 < |X| < c$ LM: every set of R is Lebesgue measurable **BP**: every set of R possesss the Baire property

LDe: there exists a selector for Lebesgue decomp. Lk: a set of cardinality k can be linearly ordered

LDe: there exists a selector for Lebesgue decomp. **Lk**: a set of cardinality k can be linearly ordered

CH: $\aleph_1 = c$ In1: $c < k \ll c$ In3: $c \neq 2^{\aleph_1}$

Sac

In1 In2: $\aleph_1 < \aleph_1 + c < \aleph_1 + k$; In2 In2: $\aleph_1 and c$ are incomparable BS: there exists a Bernstein set FU: there exists a free ultrafilter on ω WR: the set of R can be well-oredered VS: there exists a selector for a Vitali set wCH: there is no set X such that $\aleph_0 < |X| < c$ LM: every set of R is Lebesgue measurable BP: every set of R possess the Baire property

O > <
 O > <
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

If every uncountable set of reals contains a perfect subset, then there is no set X such that $\aleph_0 < |X| < \mathfrak{c}$, i.e. **PSP** \rightarrow **wCH**.

Theorem 17

If every uncountable set of reals contains a perfect subset, then \aleph_1 and \mathfrak{c} are incomparable, i.e. **PSP** \rightarrow **Inc**.

If every uncountable set of reals contains a perfect subset, then there is no set *X* such that $\aleph_0 < |X| < \mathfrak{c}$, i.e. **PSP** \rightarrow **wCH**.

Theorem 17

If every uncountable set of reals contains a perfect subset, then \aleph_1 and \mathfrak{c} are incomparable, i.e. **PSP** \rightarrow **Inc**.

If every uncountable set of reals contains a perfect subset, then there is no set *X* such that $\aleph_0 < |X| < \mathfrak{c}$, i.e. **PSP** \rightarrow **wCH**.

Theorem 17

If every uncountable set of reals contains a perfect subset, then \aleph_1 and \mathfrak{c} are incomparable, i.e. **PSP** \rightarrow **Inc**.

CH: $\aleph_1 = c$ In1: $c < k \ll c$ In3: $c \neq 2^{\aleph_1}$

In1 In2: $\aleph_1 < \aleph_1 + c < \aleph_1 + k$; In2 In2: $\aleph_1 and c$ are incomparable BS: there exists a Bernstein set FU: there exists a free ultrafilter on ω WR: the set of R can be well-oredered VS: there exists a selector for a Vitali set wCH: there is no set X such that $\aleph_0 < |X| < c$ LM: every set of R is Lebesgue measurable BP: every set of R possess the Baire property

< ロ > < 団 > < 三 > < 三 > < 三 > < 三 > < 〇 < ぐ >

- according to Theorem 15

$\mathbf{wCH} \land \mathbf{WR} \equiv \mathbf{CH}$

- by K. Gödel constructible universe L we have a model in which

wCH --→ ¬WR, In3 --→ ¬WR,

wCH → Inc, In3 → Inc,

wCH → ¬LDe, In3 → ¬LDe.

- according to Theorem 15

$\textbf{wCH} \land \textbf{WR} \equiv \textbf{CH}$

- by K. Gödel constructible universe L we have a model in which

wCH -→ ¬WR, In3 -→ ¬WR,

wCH → Inc, In3 → Inc,

wCH → ¬LDe, In3 → ¬LDe.

Jac.

- according to Theorem 15

$\textbf{wCH} \land \textbf{WR} \equiv \textbf{CH}$

- by K. Gödel constructible universe L we have a model in which

wCH --→ ¬WR, In3 --→ ¬WR,

wCH → Inc, In3 → Inc,

wCH → ¬LDe, In3 → ¬LDe.

- according to Theorem 15

$\textbf{wCH} \land \textbf{WR} \equiv \textbf{CH}$

- by K. Gödel constructible universe L we have a model in which

wCH --→ ¬WR, In3 --→ ¬WR,

wCH → Inc, In3 → Inc,

wCH →→ ¬LDe, In3 →→ ¬LDe.

- according to Theorem 15

$\textbf{wCH} \land \textbf{WR} \equiv \textbf{CH}$

- by K. Gödel constructible universe L we have a model in which

wCH $\rightarrow \neg$ WR, In3 $\rightarrow \neg$ WR,

wCH → Inc, In3 → Inc,

wCH $\rightarrow \neg$ LDe, In3 $\rightarrow \neg$ LDe.

(ロ) (同) (三) (三) (三) (0) (0)

- according to Theorem 15

$\textbf{wCH} \land \textbf{WR} \equiv \textbf{CH}$

- by K. Gödel constructible universe L we have a model in which

wCH $\rightarrow \neg$ WR, In3 $\rightarrow \neg$ WR,

wCH \rightarrow lnc, ln3 \rightarrow lnc,

wCH $\rightarrow \neg$ LDe, In3 $\rightarrow \neg$ LDe.

(ロ) (同) (三) (三) (三) (0) (0)

- according to Theorem 15

$\textbf{wCH} \land \textbf{WR} \equiv \textbf{CH}$

- by K. Gödel constructible universe L we have a model in which

wCH $\nrightarrow \neg$ WR, In3 $\nrightarrow \neg$ WR,

wCH \rightarrow lnc, ln3 \rightarrow lnc,

wCH $\rightarrow \neg$ LDe, In3 $\rightarrow \neg$ LDe.

<□> < 同> < 三> < 三> < 三> < 三> < 三</p>

- AD was proposed as an alternative to the Axiom of Choice by J. Mycielski and H. Steinhaus [2], but it is not possible to prove the consistency of ZF + AD with respect to ZF,
- the consistency strength of **AD** is indicated as much high in due to results by Solovay and mainly by T. Jech [4].

- AD was proposed as an alternative to the Axiom of Choice by J. Mycielski and H. Steinhaus [2], but it is not possible to prove the consistency of ZF + AD with respect to ZF,
- the consistency strength of **AD** is indicated as much high in due to results by Solovay and mainly by T. Jech [4].

- AD was proposed as an alternative to the Axiom of Choice by J. Mycielski and H. Steinhaus [2], but it is not possible to prove the consistency of ZF + AD with respect to ZF,
- the consistency strength of **AD** is indicated as much high in due to results by Solovay and mainly by T. Jech [4].

- AD was proposed as an alternative to the Axiom of Choice by J. Mycielski and H. Steinhaus [2], but it is not possible to prove the consistency of ZF + AD with respect to ZF,
- the consistency strength of **AD** is indicated as much high in due to results by Solovay and mainly by T. Jech [4].

Jac.

Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then

- a) wAC, PSP, LM, BP hold true,
- b) AC fails,
- c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}(\omega_1)$, i.e. $2^{\aleph_1} \ll \mathfrak{c} = 2^{\aleph_0}$.

If AD holds true, then

- a) wAC, PSP, LM, BP hold true,
- b) AC fails,

c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}(\omega_1)$, i.e. $2^{\aleph_1} \ll \mathfrak{c} = 2^{\aleph_0}$.

CH: $\aleph_1 = c$ In1: $c < k \ll c$ In3: $c \neq 2^{\aleph_1}$

In1 In2: $\aleph_1 < \aleph_1 + c < \aleph_1 + k$; In2 In2: $\aleph_1 and c$ are incomparable BS: there exists a Bernstein set FU: there exists a free ultrafilter on ω WR: the set of R can be well-oredered VS: there exists a selector for a Vitali set wCH: there is no set X such that $\aleph_0 < |X| < c$ LM: every set of R is Lebesgue measurable BP: every set of R possess the Baire property

< ロ > < 団 > < 三 > < 三 > < 三 > < 三 > < つ < つ <

If AD holds true, then

- a) wAC, PSP, LM, BP hold true,
- b) AC fails,

c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}(\omega_1)$, i.e. $2^{\aleph_1} \ll \mathfrak{c} = 2^{\aleph_0}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

(a) **ZFC** + **IC**;¹

(b) ZFC + every Σ₃¹-set of reals is Lebesgue measurable;
 (c) ZF + DC + LM.

¹IC denote statement "there exists a strongly inaccessible cardinal", i.e. a limit regular cardinal κ such that for any $\lambda < \kappa$ we have 2 = 2 = 2 = 2

If AD holds true, then

- a) wAC, PSP, LM, BP hold true,
- b) AC fails,

c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}(\omega_1)$, i.e. $2^{\aleph_1} \ll \mathfrak{c} = 2^{\aleph_0}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

(a) ZFC + IC;¹
(b) ZFC + every Σ₃¹-set of reals is Lebesgue measurable;
(c) ZF + DC + LM.

If AD holds true, then

- a) wAC, PSP, LM, BP hold true,
- b) AC fails,

c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}(\omega_1)$, i.e. $2^{\aleph_1} \ll \mathfrak{c} = 2^{\aleph_0}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

(a) $\mathbf{ZFC} + \mathbf{IC};^1$

(b) ZFC + every Σ₃¹-set of reals is Lebesgue measurable;
(c) ZF + DC + LM.

¹IC denote statement "there exists a strongly inaccessible cardinal", i.e. a limit regular cardinal κ such that for any $\lambda < \kappa$ we have $2^{\lambda} < \kappa = 2^{\lambda} < \kappa = 2^{\lambda} < \kappa = 2^{\lambda}$

If AD holds true, then

- a) wAC, PSP, LM, BP hold true,
- b) AC fails,

c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}(\omega_1)$, i.e. $2^{\aleph_1} \ll \mathfrak{c} = 2^{\aleph_0}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

(a) $\mathbf{ZFC} + \mathbf{IC};^1$

(b) **ZFC** + every Σ_3^1 -set of reals is Lebesgue measurable;

¹IC denote statement "there exists a strongly inaccessible cardinal", i.e. a limit regular cardinal κ such that for any $\lambda < \kappa$ we have $2^{\lambda} < \kappa = 2^{\lambda} < \kappa = 2^{\lambda} < \kappa = 2^{\lambda}$

If AD holds true, then

- a) wAC, PSP, LM, BP hold true,
- b) AC fails,

c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}(\omega_1)$, i.e. $2^{\aleph_1} \ll \mathfrak{c} = 2^{\aleph_0}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

(a) $\mathbf{ZFC} + \mathbf{IC};^1$

- (b) **ZFC** + every Σ_3^1 -set of reals is Lebesgue measurable;
- (c) $\mathbf{ZF} + \mathbf{DC} + \mathbf{LM}$.

¹IC denote statement "there exists a strongly inaccessible cardinal", i.e. a limit regular cardinal κ such that for any $\lambda < \kappa$ we have $2^{\lambda} < \kappa = 2^{\lambda} < \kappa = 2^{\lambda} < \kappa = 2^{\lambda}$

If **wAC** holds true then \aleph_1 is a regular cardinal.

- by the Shelah's argument in his Remark (1) of [4], the theory

 $\mathbf{ZF} + \mathbf{wAC} + \mathbf{LM}$

is equiconsistent with the previous theories (a)-(c). - S. Shelah proved that the consistency of **ZF** implies the consistency of **ZF** + **wAC** + **BP**, i.e. the theories

- (d) **ZF**
- (e) $\mathbf{ZF} + \mathbf{wAC} + \mathbf{BP}$

are equiconsistent.

If **wAC** holds true then \aleph_1 is a regular cardinal.

- by the Shelah's argument in his Remark (1) of [4], the theory

ZF + wAC + LM

is equiconsistent with the previous theories (a)-(c).

 S. Shelah proved that the consistency of ZF implies the consistency of ZF + wAC + BP, i.e. the theories

- (d) **ZF**
- (e) $\mathbf{ZF} + \mathbf{wAC} + \mathbf{BP}$

are equiconsistent.

If **wAC** holds true then \aleph_1 is a regular cardinal.

- by the Shelah's argument in his Remark (1) of [4], the theory

ZF + wAC + LM

is equiconsistent with the previous theories (a)-(c).
S. Shelah proved that the consistency of ZF implies the consistency of ZF + wAC + BP, i.e. the theories

(d) ZF
(e) ZF + wAC + BP

If **wAC** holds true then \aleph_1 is a regular cardinal.

- by the Shelah's argument in his Remark (1) of [4], the theory

ZF + wAC + LM

Sac

is equiconsistent with the previous theories (a)-(c).

- S. Shelah proved that the consistency of ZF implies the consistency of ZF + wAC + BP, i.e. the theories

(d) **ZF**

(e) $\mathbf{ZF} + \mathbf{wAC} + \mathbf{BP}$

are equiconsistent.

- by Shelah's model the consistency strength of ZF + wAC + LM is strictly greater than that of ZF + wAC + BP,
- by Solovay's model the consistency of ZF + wAC + LM is greater than that of ZF + wAC + PSP.

Thus, a natural question arises:

Is consistency of the existence of an inaccessible cardinal necessary for PSP?

- by Shelah's model the consistency strength of ZF + wAC + LM is strictly greater than that of ZF + wAC + BP,
- by Solovay's model the consistency of ZF + wAC + LM is greater than that of ZF + wAC + PSP.

Thus, a natural question arises:

is consistency of the existence of an inaccessible cardinal necessary for PSP?

- by Shelah's model the consistency strength of ZF + wAC + LM is strictly greater than that of ZF + wAC + BP,
- by Solovay's model the consistency of ZF + wAC + LM is greater than that of ZF + wAC + PSP.

Thus, a natural question arises:

Question

Is consistency of the existence of an inaccessible cardinal necessary for **PSP**?

- by Shelah's model the consistency strength of ZF + wAC + LM is strictly greater than that of ZF + wAC + BP,
- by Solovay's model the consistency of ZF + wAC + LM is greater than that of ZF + wAC + PSP.

Thus, a natural question arises:

Question

Is consistency of the existence of an inaccessible cardinal necessary for **PSP**?

- by Shelah's model the consistency strength of ZF + wAC + LM is strictly greater than that of ZF + wAC + BP,
- by Solovay's model the consistency of ZF + wAC + LM is greater than that of ZF + wAC + PSP.

Jac.

Thus, a natural question arises:

Question

Is consistency of the existence of an inaccessible cardinal necessary for **PSP**?

If **PSP** holds true and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe **L**.

● the theory **ZF**+ℵ₁ is regular +**PSP** is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory $\mathbf{ZF} + \mathbf{wCH}$, we obtain

 the consistency of ZF + wAC + PSP is strictly greater than that of ZF + wAC + wCH.

S. Shelah [4] showed that Theorem 14 on the Baire Property is not provable in the theory **ZF** + **DC**.

If **PSP** holds true and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe **L**.

 the theory ZF+ℵ₁ is regular +PSP is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory $\mathbf{ZF} + \mathbf{wCH}$, we obtain

 the consistency of ZF + wAC + PSP is strictly greater than that of ZF + wAC + wCH.

S. Shelah [4] showed that Theorem 14 on the Baire Property is not provable in the theory **ZF** + **DC**.

If **PSP** holds true and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe **L**.

 the theory ZF+ℵ₁ is regular +PSP is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory $\mathbf{ZF} + \mathbf{wCH}$, we obtain

 the consistency of ZF + wAC + PSP is strictly greater than that of ZF + wAC + wCH.

S. Shelah [4] showed that Theorem 14 on the Baire Property is not provable in the theory $\mathbf{ZF} + \mathbf{DC}$.

If **PSP** holds true and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe **L**.

 the theory ZF+ℵ₁ is regular +PSP is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory $\mathbf{ZF} + \mathbf{wCH}$, we obtain

 the consistency of ZF + wAC + PSP is strictly greater than that of ZF + wAC + wCH.

S. Shelah [4] showed that Theorem 14 on the Baire Property is not provable in the theory $\mathbf{ZF} + \mathbf{DC}$.

If **PSP** holds true and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe **L**.

 the theory ZF+ℵ₁ is regular +PSP is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory $\mathbf{ZF} + \mathbf{wCH}$, we obtain

 the consistency of ZF + wAC + PSP is strictly greater than that of ZF + wAC + wCH.

S. Shelah [4] showed that Theorem 14 on the Baire Property is not provable in the theory $\mathbf{ZF} + \mathbf{DC}$.

Jac.

- BP → Inc,
- since BP implies ¬WR, then ¬WR → Inc,
- according to Theorem 15 we get BP --> wCH,
- by Theorem 16 we know that PSP → wCH, therefore BP → PSP,
- however, according to Theorem 14 we have BP → LM.

 $\mathcal{O} \mathcal{O} \mathcal{O}$

- BP \rightarrow Inc,
- since **BP** implies \neg **WR**, then \neg **WR** \rightarrow **Inc**,
- according to Theorem 15 we get BP → wCH,
- by Theorem 16 we know that PSP → wCH, therefore BP → PSP,
- however, according to Theorem 14 we have BP → LM.

 $\mathcal{O} \mathcal{O} \mathcal{O}$

- BP \rightarrow Inc,
- since BP implies ¬WR, then ¬WR → Inc,
- according to Theorem 15 we get BP → wCH,
- by Theorem 16 we know that PSP → wCH, therefore BP → PSP,
- however, according to Theorem 14 we have BP → LM.

- BP \rightarrow Inc,
- since **BP** implies \neg **WR**, then \neg **WR** \rightarrow **Inc**,
- according to Theorem 15 we get BP → wCH,
- by Theorem 16 we know that PSP → wCH, therefore BP → PSP,
- however, according to Theorem 14 we have BP → LM.

ヘロト ヘアト ヘヨト ヘヨト

- BP \rightarrow Inc,
- since **BP** implies \neg **WR**, then \neg **WR** \rightarrow **Inc**,
- according to Theorem 15 we get BP → wCH,
- by Theorem 16 we know that PSP → wCH, therefore BP → PSP,
- however, according to Theorem 14 we have BP → LM.

- BP \rightarrow Inc,
- since **BP** implies \neg **WR**, then \neg **WR** \rightarrow **Inc**,
- according to Theorem 15 we get BP → wCH,
- by Theorem 16 we know that PSP → wCH, therefore BP → PSP,
- however, according to Theorem 14 we have BP → LM.

Jac.

- BP \rightarrow Inc,
- since **BP** implies \neg **WR**, then \neg **WR** \rightarrow **Inc**,
- according to Theorem 15 we get BP → wCH,
- by Theorem 16 we know that PSP → wCH, therefore BP → PSP,
- however, according to Theorem 14 we have BP → LM.

- BP \rightarrow Inc,
- since **BP** implies \neg **WR**, then \neg **WR** $\not\rightarrow$ **Inc**,
- according to Theorem 15 we get BP → wCH,
- by Theorem 16 we know that PSP → wCH, therefore BP → PSP,
- however, according to Theorem 14 we have BP --> LM.

= √Q(~

- BP \rightarrow Inc,
- since **BP** implies \neg **WR**, then \neg **WR** $\not\rightarrow$ **Inc**,
- according to Theorem 15 we get BP → wCH,
- by Theorem 16 we know that PSP → wCH, therefore BP → PSP,
- however, according to Theorem 14 we have **BP** \rightarrow **LM**.

(ロ) (目) (三) (三) (三) (口)

Diagram in which none of the indicated implications is provable in the theory $\mathbf{ZF} + \mathbf{DC}$

¬LDe

LDe: there exists a selector for Lebesgue decomp. **Lk**: a set of cardinality k can be linearly ordered **PSP**: every uncount. set of R contains a perfect set

In3		
	$\neg Wk$	
•		$CH: \aleph_1 = c$
		In1: $c < k \ll c$
	¬WR.	In3: $c \neq 2^{\aleph_1}$

In1 In2: $\aleph_1 < \aleph_1 + c < \aleph_1 + k$; In2 In2: \aleph_1 and c are incomparable BS: there exists a Bernstein set FU: there exists a free ultrafilter on ω WR: the set of R can be well-oredered VS: there exists a selector for a Vitali set wCH: there is no set X such that $\aleph_0 < |X| < c$ LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe L.

Sac

Since R₁ is not inaccessible in L in the Shelah's above mentioned model, we obtain

- BP → ¬LDe,
- LDe \rightarrow WR.

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe **L**.

- BP → ¬LDe,
- LDe \rightarrow WR.

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe **L**.

- BP → ¬LDe,
- LDe \rightarrow WR.

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe **L**.

Sac

- **BP** $\rightarrow \neg$ **LDe**,
- LDe \rightarrow WR.

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe **L**.

Sac

Since \aleph_1 is not inaccessible in **L** in the Shelah's above mentioned model, we obtain

• BP $\rightarrow \neg$ LDe,

• LDe $\rightarrow WR$.

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_1 is a regular cardinal, then \aleph_1 is an inaccessible cardinal in the constructible universe **L**.

Sac

- BP $\rightarrow \neg$ LDe,
- LDe \rightarrow WR.

Diagram in which none of the indicated implications is provable in the theory $\mathbf{ZF} + \mathbf{DC}$

LDe: there exists a selector for Lebesgue decomp. **Lk**: a set of cardinality k can be linearly ordered **PSP**: every uncount. set of R contains a perfect set CH: $\aleph_1 = c$ In1: $c < k \ll c$ In3: $c \neq 2^{\aleph_1}$

In1 In2: $\aleph_1 < \aleph_1 + c < \aleph_1 + k$; In2 In2: \aleph_1 and c are incomparable BS: there exists a Bernstein set FU: there exists a free ultrafilter on ω WR: the set of R can be well-oredered VS: there exists a selector for a Vitali set wCH: there is no set X such that $\aleph_0 < |X| < c$ LM: every set of R is Lebesgue measurable

BP: every set of R possesss the Baire property

<ロ> < 四> < 回> < 三> < 三> < 三> 三 のへで

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

• $\mathfrak{c} < \mathfrak{k} \to (\aleph_1, \mathfrak{c} \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k})$ i.e. In1 \to Inc \lor In2

J. Mycielski's statement:

• $\neg Lk \rightarrow in4$, • $in4 \rightarrow \aleph_1 < \aleph_1 + c < \aleph_1 + \ell$, • $c < \ell \rightarrow (c < 2^{\aleph_1}) \lor in4$, i.e. $in1 \rightarrow in3 \lor in4$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

• $\mathfrak{c} < \mathfrak{k} \to (\aleph_1, \mathfrak{c} \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k})$ i.e. In1 \to Inc \lor In2

J. Mycielski's statement:

• $\neg Lk \rightarrow ln4$, • $ln4 \rightarrow \aleph_1 < \aleph_1 + c < \aleph_1 + \ell$, • $c < \ell \rightarrow (c < 2^{\aleph_1}) \lor ln4$, i.e. $ln1 \rightarrow ln3 \lor ln4$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

• $\mathfrak{c} < \mathfrak{k} \to (\aleph_1, \mathfrak{c} \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k})$ i.e. In1 \to Inc \lor In2

J. Mycielski's statement:

 $2^{\aleph_1} < \mathfrak{k} \lor \left(\neg (2^{\aleph_1} \geq \mathfrak{k}) \land \neg (2^{\aleph_1} \geq \mathfrak{k} + \aleph_1) \land \aleph_1 + \mathfrak{k} < 2^{\aleph_1} + \mathfrak{k} \right)$

• $\neg Lk \rightarrow In4$,

- In4 $\rightarrow \aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k}$,
- $\mathfrak{c} < \mathfrak{k} \rightarrow (\mathfrak{c} < 2^{\aleph_1}) \lor \mathsf{In4}$, i.e. $\mathsf{In1} \rightarrow \mathsf{In3} \lor \mathsf{In4}$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

• $\mathfrak{c} < \mathfrak{k} \to (\aleph_1, \mathfrak{c} \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k})$ i.e. In1 \to Inc \lor In2

J. Mycielski's statement:

 $2^{\aleph_1} < \mathfrak{k} \lor \left(\neg (2^{\aleph_1} \geq \mathfrak{k}) \land \neg (2^{\aleph_1} \geq \mathfrak{k} + \aleph_1) \land \aleph_1 + \mathfrak{k} < 2^{\aleph_1} + \mathfrak{k} \right)$

• $\neg Lk \rightarrow In4$,

- In4 $\rightarrow \aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k}$,
- $c < \mathfrak{k} \rightarrow (c < 2^{\aleph_1}) \lor \mathsf{In4}$, i.e. $\mathsf{In1} \rightarrow \mathsf{In3} \lor \mathsf{In4}$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

• $\mathfrak{c} < \mathfrak{k} \rightarrow (\aleph_1, \mathfrak{c} \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k})$ i.e. In1 \rightarrow Inc \lor In2

J. Mycielski's statement:

In4:

$$2^{\aleph_1} < \mathfrak{k} \vee (\neg (2^{\aleph_1} \geq \mathfrak{k}) \wedge \neg (2^{\aleph_1} \geq \mathfrak{k} + \aleph_1) \wedge \aleph_1 + \mathfrak{k} < 2^{\aleph_1} + \mathfrak{k})$$

• $\neg Lk \rightarrow In4$, • $In4 \rightarrow \aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k}$, • $\mathfrak{c} < \mathfrak{k} \rightarrow (\mathfrak{c} < 2^{\aleph_1}) \lor In4$, i.e. $In1 \rightarrow In3 \lor In4$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

• $\mathfrak{c} < \mathfrak{k} \rightarrow (\aleph_1, \mathfrak{c} \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k})$ i.e. In1 \rightarrow Inc \lor In2

J. Mycielski's statement:

In4:

$$2^{\aleph_1} < \mathfrak{k} \vee (\neg (2^{\aleph_1} \geq \mathfrak{k}) \wedge \neg (2^{\aleph_1} \geq \mathfrak{k} + \aleph_1) \wedge \aleph_1 + \mathfrak{k} < 2^{\aleph_1} + \mathfrak{k})$$

• $\neg Lk \rightarrow In4$,

- In4 $\rightarrow \aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k}$,
- $\mathfrak{c} < \mathfrak{k} \rightarrow (\mathfrak{c} < 2^{\aleph_1}) \lor \mathsf{In4}, \mathsf{i.e.} \mathsf{In1} \rightarrow \mathsf{In3} \lor \mathsf{In4}.$

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

• $\mathfrak{c} < \mathfrak{k} \rightarrow (\aleph_1, \mathfrak{c} \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k})$ i.e. In1 \rightarrow Inc \lor In2

J. Mycielski's statement:

In4: $2^{\aleph_1} < \mathfrak{k} \lor (\neg (2^{\aleph_1} \ge \mathfrak{k}) \land \neg (2^{\aleph_1} \ge \mathfrak{k} + \aleph_1) \land \aleph_1 + \mathfrak{k} < 2^{\aleph_1} + \mathfrak{k})$ • $\neg Lk \rightarrow ln4,$ • $ln4 \rightarrow \aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k},$

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

• $\mathfrak{c} < \mathfrak{k} \rightarrow (\aleph_1, \mathfrak{c} \text{ are incomparable}) \lor (\aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k})$ i.e. In1 \rightarrow Inc \lor In2

J. Mycielski's statement:

In4: $2^{\aleph_1} < \mathfrak{k} \lor (\neg (2^{\aleph_1} \ge \mathfrak{k}) \land \neg (2^{\aleph_1} \ge \mathfrak{k} + \aleph_1) \land \aleph_1 + \mathfrak{k} < 2^{\aleph_1} + \mathfrak{k})$ $\neg \mathsf{Lk} \to \mathsf{In4},$ $\mathsf{In4} \to \aleph_1 < \aleph_1 + \mathfrak{c} < \aleph_1 + \mathfrak{k},$ $\mathfrak{c} < \mathfrak{k} \to (\mathfrak{c} < 2^{\aleph_1}) \lor \mathsf{In4}, i.e. \mathsf{In1} \to \mathsf{In3} \lor \mathsf{In4}.$

References

- Bernstein F., Zur Theorie der trigonomischen Reihen, Sitzungber. Sachs. Akad. Wiss. Leipzig 60 (1908), 325–338.
- Gödel K., THE CONSISTENCY OF THE AXIOM OF CHOICE AND OF THE GENERALIZED CONTINUUM HYPOTHESIS WITH THE AXIONS OF SET THEORY, Annals of Math. Studies, Princeton 1940.
- Cohen P. J., The independence of the continuum hypothesis, Proc. Natl. Acad. Sci. USA 50 (1963), 1143–1148, and 51 (1964), 105–110.
- Jech T., SET THEORY, Third edition, Springer-Verlag, Berlin 2006.

References

- Mycielski J., *On the Axiom of Determinateness,* Fund. Math. **53** (1964), 205–224.
- Mycielski J. and Steinhaus H., A mathematical axiom contradicting the axiom of choice, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 10 (1962), 1–3.
- Raisonnier J., A mathematical proof of S. Shelah's theorem on the measure problem and related results, Israel J. Math.
 48 (1984), 48–56.
- Shelah S., *Can you take Solovay inaccessible away?,* Israel J. Math. **48** (1984), 1–47.

References

- Sierpiński W., Démonstration de l'egalité 2^m m = 2^m pour les nombres cardinaux transfinis, Fund. Math. 34 (1947), 113–118.
- Solovay R. M., A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), 1–56.
- Specker E., *Zur Axiomatik der Mengenlehre,* Zeitschrift f. math. Logic and Grundlagen der Math. **3** (1957), 173–210.
- Vitali G., Sul problema della misura dei gruppi di punti di una retta, Bologna 1905.