Regularity properties on the real line

Michal Staš
Department of Mathematics
Faculty of Science P. J. Šafárik University

4. februar 2010 Hejnice

Some weak forms of the Axiom of Choice:

- The Weak $\mathbf{\Delta x i o m}$ of Chniee w $\mathbf{\Delta C}$ savs that for any countable family of non-empty subsets of a given set of power $2^{\aleph_{0}}$ there exists a choice function.

Some weak forms of the Axiom of Choice:

> The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power $2^{\aleph_{0}}$ there exists a choice function.

> The Axiom of Dependent Choice DC says that for any binarv relation R on a non-empty set A such that for everv $a \in A$ there exists $a b \in A$ such that $a R b$, for every $a \in A$ there exists a function $f: \omega \longrightarrow A$ satisfying $f(n) R f(n+1)$ for anv $n \in \omega$ and $f(0)=a$.

Some weak forms of the Axiom of Choice:

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power $2^{\aleph_{0}}$ there exists a choice function.

$\mathrm{AC} \rightarrow \mathrm{DC}, \quad \mathrm{DC} \rightarrow \mathrm{wAC}$

and the implicatinns cannot he reversed

Some weak forms of the Axiom of Choice：
－The Weak Axiom of Choice wAC says that for any countable family of non－empty subsets of a given set of power $2^{\aleph_{0}}$ there exists a choice function．
－The Axiom of Dependent Choice DC says that for any binary relation R on a non－empty set A such that for every $a \in A$ there exists a $b \in A$ such that $a R b$ ，for every $a \in A$ there exists a function $f: \omega \longrightarrow A$ satisfying $f(n) \operatorname{Rf}(n+1)$ for any $n \in \omega$ and $f(0)=a$ ．
and the implications cannot be reversed

Some weak forms of the Axiom of Choice:

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power $2^{\aleph_{0}}$ there exists a choice function.
- The Axiom of Dependent Choice DC says that for any binary relation R on a non-empty set A such that for every $a \in A$ there exists a $b \in A$ such that $a R b$, for every $a \in A$ there exists a function $f: \omega \longrightarrow A$ satisfying $f(n) \operatorname{Rf}(n+1)$ for any $n \in \omega$ and $f(0)=a$.
Then

$$
\mathrm{AC} \rightarrow \mathrm{DC}, \quad \mathrm{DC} \rightarrow \mathrm{wAC}
$$

and the implications cannot be reversed

A subset $B \subset X$ is called a Bernstein set if $|B|$ and neither B nor $X \backslash B$ contains a perfect subset．

A subset $B \subseteq X$ is called a Bernstein set if $|B|=|X \backslash B|=\mathfrak{c}$ and neither B nor $X \backslash B$ contains a perfect subset．

a Bernstein set is a classical example of a non－measurable set

A subset $B \subseteq X$ is called a Bernstein set if $|B|=|X \backslash B|=\mathfrak{c}$ and neither B nor $X \backslash B$ contains a perfect subset.

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space X can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. WR $\rightarrow \mathbf{B S}$.

[^0]A subset $B \subseteq X$ is called a Bernstein set if $|B|=|X \backslash B|=\mathfrak{c}$ and neither B nor $X \backslash B$ contains a perfect subset.

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space X can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. WR $\rightarrow \mathbf{B S}$.

- a Bernstein set is a classical example of a non-measurable set
\square

A subset $B \subseteq X$ is called a Bernstein set if $|B|=|X \backslash B|=\mathfrak{c}$ and neither B nor $X \backslash B$ contains a perfect subset.

Theorem 1 (F. Bernstein [1])

If an uncountable Polish space X can be well-ordered, then there exists a Bernstein set $B \subseteq X$, i.e. WR $\rightarrow \mathbf{B S}$.

- a Bernstein set is a classical example of a non-measurable set

Theorem 2 (F. Bernstein [1])

A Bernstein set does not possess the Baire Property and is not Lebesgue measurable, i.e. BP $\rightarrow \neg$ BS and $\mathbf{L M} \rightarrow \neg \mathbf{B S}$.

LM: every set of R is Lebesgue measurable BP: every set of R possesss the Baire property

Regularity properties on the real line

Let $\langle X,+, 0\rangle$ be additive group. A set $V \subseteq X$ is called a Vitali

프․

Let $\langle X,+, 0\rangle$ be additive group.

Let $\langle X,+, 0\rangle$ be additive group. A set $V \subseteq X$ is called a Vitali set

Let $\langle X,+, 0\rangle$ be additive group．A set $V \subseteq X$ is called a Vitali set if there exists a countable dense subset D such that

Let $\langle X,+, 0\rangle$ be additive group．A set $V \subseteq X$ is called a Vitali set if there exists a countable dense subset D such that
－$(\forall x, y)((x, y \in V \wedge x \neq y) \rightarrow x-y \notin D)$ ，

Let $\langle X,+, 0\rangle$ be additive group．A set $V \subseteq X$ is called a Vitali set if there exists a countable dense subset D such that
－$(\forall x, y)((x, y \in V \wedge x \neq y) \rightarrow x-y \notin D)$ ，
－$(\forall x \in X)(\exists y \in V) x-y \in D$ ．
of the set X and we call it the Vitali decomposition

Let $\langle X,+, 0\rangle$ be additive group. A set $V \subseteq X$ is called a Vitali set if there exists a countable dense subset D such that

- $(\forall x, y)((x, y \in V \wedge x \neq y) \rightarrow x-y \notin D)$,
- $(\forall x \in X)(\exists y \in V) x-y \in D$.

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x-y \in D$.
of the set X and we call it the Vitali decomposition

- if there exists a selector for the Vitali decomposition then
the selector is a Vitali set

Let $\langle X,+, 0\rangle$ be additive group. A set $V \subseteq X$ is called a Vitali set if there exists a countable dense subset D such that

- $(\forall x, y)((x, y \in V \wedge x \neq y) \rightarrow x-y \notin D)$,
- $(\forall x \in X)(\exists y \in V) x-y \in D$.

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x-y \in D$.

- the family $\{\{y \in X: x-y \in D\}: x \in X\}$ is a decomposition of the set X and we call it the Vitali decomposition
the selector is a Vitali set

Let $\langle X,+, 0\rangle$ be additive group. A set $V \subseteq X$ is called a Vitali set if there exists a countable dense subset D such that

- $(\forall x, y)((x, y \in V \wedge x \neq y) \rightarrow x-y \notin D)$,
- $(\forall x \in X)(\exists y \in V) x-y \in D$.

Note that, for every $x \in X$ there exists exactly one real $y \in V$ such that $x-y \in D$.

- the family $\{\{y \in X: x-y \in D\}: x \in X\}$ is a decomposition of the set X and we call it the Vitali decomposition
- if there exists a selector for the Vitali decomposition then the selector is a Vitali set

Theorem 3 (G. Vitali [4]) If the real line can be well-o dered, then there exists a Vitali set i.e. WR a Vitali set is an another example of a non-measurable set

$-\quad \equiv$
Theorem 3 (G. Vitali [4])

If the real line can be well-ordered, then there exists a Vitali set, i.e. WR \rightarrow VS.
a Vitali set is an another example of a non-measurable set

Theorem 3 (G. Vitali [4])

If the real line can be well-ordered, then there exists a Vitali set, i.e. WR \rightarrow VS.

- a Vitali set is an another example of a non-measurable set

Theorem 3 (G. Vitali [4])

If the real line can be well-ordered, then there exists a Vitali set, i.e. WR \rightarrow VS.

- a Vitali set is an another example of a non-measurable set

Theorem 4 (G. Vitali [4])

A Vitali set does not possess the Baire Property and is not Lebesgue measurable, i.e. BP $\rightarrow \neg$ VS and $\mathbf{L M} \rightarrow \neg$ VS.

LM：every set of R is Lebesgue measurable BP：every set of R possesss the Baire property

Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra

Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω.

Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra

Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$
\text { Fin }=\left\{A \subseteq \omega:|A|<\aleph_{0}\right\}
$$

of all finite subsets of ω
IS

Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$
\text { Fin }=\left\{A \subseteq \omega:|A|<\aleph_{0}\right\}
$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.
denote by \mathfrak{k} its cardinality

Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω ． $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$
\text { Fin }=\left\{A \subseteq \omega:|A|<\aleph_{0}\right\}
$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$ ．
－we can consider the quotient algebra $\mathcal{P}(\omega) /$ Fin
－we define relation \ll between cardinalities of sets as

Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$
\text { Fin }=\left\{A \subseteq \omega:|A|<\aleph_{0}\right\}
$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

- we can consider the quotient algebra $\mathcal{P}(\omega) /$ Fin and we denote by \mathfrak{k} its cardinality

$$
\mathfrak{k}=\mid \mathcal{P}(\omega) / \text { Fin } \mid
$$

- we define relation \ll between cardinalities of sets as

Let us consider the family $\mathcal{P}(\omega)$ of all subsets of ω. $\mathcal{P}(\omega)$ is a Boolean algebra and the set

$$
\text { Fin }=\left\{A \subseteq \omega:|A|<\aleph_{0}\right\}
$$

of all finite subsets of ω is an ideal of algebra $\mathcal{P}(\omega)$.

- we can consider the quotient algebra $\mathcal{P}(\omega) /$ Fin and we denote by \mathfrak{k} its cardinality

$$
\mathfrak{k}=\mid \mathcal{P}(\omega) / \text { Fin } \mid
$$

- we define relation \ll between cardinalities of sets as

$$
|A| \ll|B| \equiv(\exists f)(f: B \xrightarrow{\text { onto }} A)
$$

Theorem 5
\square the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k}=2^{\mathbb{N}_{0}}$, i.e. In1

Note the following:

Theorem 5

The inequalities $2^{\aleph_{0}} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_{0}}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k}=2^{\aleph_{0}}$, i.e. In1 \rightarrow-WR.

[^1]
Theorem 5

The inequalities $2^{\aleph_{0}} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_{0}}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k}=2^{\aleph_{0}}$, i.e. In1 \rightarrow-WR.

Note the following:

Theorem 5

The inequalities $2^{\aleph_{0}} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_{0}}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k}=2^{\aleph_{0}}$, i.e. In1 \rightarrow-WR.

Note the following: if A, B are sets such that $|A| \leq|B|,|B| \ll|A|$

Theorem 5

The inequalities $2^{\aleph_{0}} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_{0}}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k}=2^{\aleph_{0}}$, i.e.
In1 \rightarrow-WR.
Note the following: if A, B are sets such that $|A| \leq|B|,|B| \ll|A|$ then A can be well-ordered if and only if B can be well-ordered.

[^2]
Theorem 5

The inequalities $2^{\aleph_{0}} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_{0}}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k}=2^{\aleph_{0}}$, i.e. In1 $\rightarrow \neg$ WR.

Note the following: if A, B are sets such that $|A| \leq|B|,|B| \ll|A|$ then A can be well-ordered if and only if B can be well-ordered.

Corollary 6

A set of cardinality \mathfrak{k} can be well-ordered if and only if the set of reals \mathbb{R} can be well-ordered.

Theorem 5

The inequalities $2^{\aleph_{0}} \leq \mathfrak{k}$ and $\mathfrak{k} \ll 2^{\aleph_{0}}$ hold true. Moreover, if the set $\mathcal{P}(\omega)$ can be well-ordered, then $\mathfrak{k}=2^{\aleph_{0}}$, i.e. In1 $\rightarrow \neg$ WR.

Note the following: if A, B are sets such that $|A| \leq|B|,|B| \ll|A|$ then A can be well-ordered if and only if B can be well-ordered.

Corollary 6

A set of cardinality \mathfrak{k} can be well-ordered if and only if the set of reals \mathbb{R} can be well-ordered.

Corollary 7

If a set of cardinality \mathfrak{k} cannot be linearly ordered, then $\aleph_{1}<\aleph_{1}+\mathfrak{c}<\aleph_{1}+\mathfrak{k}$, i.e. $\neg \mathbf{L k} \rightarrow \operatorname{In} 2$.

Wk: a set of cardinality k can be well-ordered
$\mathbf{L k}$: a set of cardinality k can be linearly ordered

LM: every set of R is Lebesgue measurable
BP: every set of R possesss the Baire property

Regularity properties on the real line

Vitali set V on the Cantor space ${ }^{\omega} 2$

Vitali set V on the Cantor space ${ }^{\omega} 2$

Vitali set V on the Cantor space ${ }^{\omega} 2$

- $(\forall x, y)\left((x, y \in V \wedge x \neq y) \rightarrow\{n: x(n) \neq y(n)\} \in[\omega]^{\omega}\right.$,

the familyis a Vitali decomposition of the Cantor space ${ }^{\omega} 2$

Vitali set V on the Cantor space ${ }^{\omega} 2$

- $(\forall x, y)\left((x, y \in V \wedge x \neq y) \rightarrow\{n: x(n) \neq y(n)\} \in[\omega]^{\omega}\right.$,
- $\left(\forall x \in{ }^{\omega} 2\right)(\exists y \in V)\{n: x(n) \neq y(n)\} \in[\omega]^{<\omega}$.
- the family

$$
\left\{\left\{y \in{ }^{\omega} 2:\{n: x(n) \neq y(n)\} \in[\omega]^{<\omega}\right\}: x \in{ }^{\omega} 2\right\}
$$

is a Vitali decomposition of the Cantor space ${ }^{\omega} 2$

Vitali set V on the Cantor space ${ }^{\omega} 2$
－$(\forall x, y)\left((x, y \in V \wedge x \neq y) \rightarrow\{n: x(n) \neq y(n)\} \in[\omega]^{\omega}\right.$ ，
－$\left(\forall x \in{ }^{\omega} 2\right)(\exists y \in V)\{n: x(n) \neq y(n)\} \in[\omega]^{<\omega}$ ．
－the family

$$
\left\{\left\{y \in{ }^{\omega} 2:\{n: x(n) \neq y(n)\} \in[\omega]^{<\omega}\right\}: x \in{ }^{\omega} 2\right\}
$$

is a Vitali decomposition of the Cantor space ${ }^{\omega} 2$
$A \subseteq \omega$ ，then

Vitali set V on the Cantor space ${ }^{\omega} 2$

- $(\forall x, y)\left((x, y \in V \wedge x \neq y) \rightarrow\{n: x(n) \neq y(n)\} \in[\omega]^{\omega}\right.$,
- $\left(\forall x \in{ }^{\omega} 2\right)(\exists y \in V)\{n: x(n) \neq y(n)\} \in[\omega]^{<\omega}$.
- the family

$$
\left\{\left\{y \in{ }^{\omega} 2:\{n: x(n) \neq y(n)\} \in[\omega]^{<\omega}\right\}: x \in{ }^{\omega} 2\right\}
$$

is a Vitali decomposition of the Cantor space ${ }^{\omega} 2$

- if $f: \mathcal{P}(\omega) \rightarrow^{\omega} 2$ is a function such that $f(A)=\chi(A)$ for any
$A \subseteq \omega$

Vitali set V on the Cantor space ${ }^{\omega} 2$

- $(\forall x, y)\left((x, y \in V \wedge x \neq y) \rightarrow\{n: x(n) \neq y(n)\} \in[\omega]^{\omega}\right.$,
- $\left(\forall x \in{ }^{\omega} 2\right)(\exists y \in V)\{n: x(n) \neq y(n)\} \in[\omega]^{<\omega}$.
- the family

$$
\left\{\left\{y \in{ }^{\omega} 2:\{n: x(n) \neq y(n)\} \in[\omega]^{<\omega}\right\}: x \in{ }^{\omega} 2\right\}
$$

is a Vitali decomposition of the Cantor space ${ }^{\omega} 2$

- if $f: \mathcal{P}(\omega) \rightarrow{ }^{\omega} 2$ is a function such that $f(A)=\chi(A)$ for any
$A \subseteq \omega$, then

$$
\bar{f}: \mathcal{P}(\omega) / \text { Fin } \underset{\text { onto }}{\stackrel{1-1}{\rightarrow}} \omega_{2} / \text { Fin }
$$

Vitali set V on the Cantor space ${ }^{\omega} 2$
－$(\forall x, y)\left((x, y \in V \wedge x \neq y) \rightarrow\{n: x(n) \neq y(n)\} \in[\omega]^{\omega}\right.$ ，
－$\left(\forall x \in{ }^{\omega} 2\right)(\exists y \in V)\{n: x(n) \neq y(n)\} \in[\omega]^{<\omega}$ ．
－the family

$$
\left\{\left\{y \in{ }^{\omega} 2:\{n: x(n) \neq y(n)\} \in[\omega]^{<\omega}\right\}: x \in{ }^{\omega} 2\right\}
$$

is a Vitali decomposition of the Cantor space ${ }^{\omega} 2$
－if $f: \mathcal{P}(\omega) \rightarrow^{\omega} 2$ is a function such that $f(A)=\chi(A)$ for any
$A \subseteq \omega$ ，then

$$
\bar{f}: \mathcal{P}(\omega) / \text { Fin } \underset{\text { onto }}{\stackrel{1-1}{\rightarrow}} \omega_{2} / \text { Fin }
$$

Fact

A Vitali set V on Cantor space ${ }^{\omega} 2$ is a set of cardinality \mathfrak{k} ．

Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali denamnncition.

Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T} / \mathbb{D}=\{\{y \in \mathbb{T}: x-y \in \mathbb{D}\}: x \in \mathbb{T}\}$

Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T} / \mathbb{D}=\{\{y \in \mathbb{T}: x-y \in \mathbb{D}\}: x \in \mathbb{T}\}$
-

$$
f:{ }^{\omega} 2 / \operatorname{Fin} \underset{\text { onto }}{\stackrel{1-1}{\rightarrow}} \mathbb{T} / \mathbb{D}
$$

- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinalitv \mathfrak{k}

Vitali set on the circle \mathbb{T} for the set of all rational numbers

Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T} / \mathbb{D}=\{\{y \in \mathbb{T}: x-y \in \mathbb{D}\}: x \in \mathbb{T}\}$
-

$$
f:{ }^{\omega} 2 / \text { Fin } \underset{\text { onto }}{\stackrel{1-1}{\rightarrow}} \mathbb{T} / \mathbb{D}
$$

- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{k}

Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T} / \mathbb{D}=\{\{y \in \mathbb{T}: x-y \in \mathbb{D}\}: x \in \mathbb{T}\}$
-

$$
f:{ }^{\omega} 2 / \text { Fin } \underset{\text { onto }}{\frac{1-1}{1}} \mathbb{T} / \mathbb{D}
$$

- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{k}
Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T} / \mathbb{D}=\{\{y \in \mathbb{T}: x-y \in \mathbb{D}\}: x \in \mathbb{T}\}$

$$
f:{ }^{\omega} 2 / \operatorname{Fin} \underset{\text { onto }}{\stackrel{1-1}{\rightarrow}} \mathbb{T} / \mathbb{D}
$$

- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{k}
Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

$$
\mathbb{T} / \mathbb{Q} \cong(\mathbb{T} / \mathbb{D}) /(\mathbb{Q} / \mathbb{D})
$$

Thus,

Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T} / \mathbb{D}=\{\{y \in \mathbb{T}: x-y \in \mathbb{D}\}: x \in \mathbb{T}\}$

$$
f:{ }^{\omega} 2 / \operatorname{Fin} \underset{\text { onto }}{\stackrel{1-1}{\rightarrow}} \mathbb{T} / \mathbb{D}
$$

- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{k}
Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

$$
\mathbb{T} / \mathbb{Q} \cong(\mathbb{T} / \mathbb{D}) /(\mathbb{Q} / \mathbb{D})
$$

Thus,

Vitali set on the circle \mathbb{T} for the set of all dyadic numbers \mathbb{D}

- Vitali decomposition: $\mathbb{T} / \mathbb{D}=\{\{y \in \mathbb{T}: x-y \in \mathbb{D}\}: x \in \mathbb{T}\}$

$$
f:{ }^{\omega} 2 / \operatorname{Fin} \underset{\text { onto }}{\stackrel{1-1}{\rightarrow}} \mathbb{T} / \mathbb{D}
$$

- if there exists a selector for the Vitali decomposition, then a Vitali set is the set of cardinality \mathfrak{k}
Vitali set on the circle \mathbb{T} for the set of all rational numbers \mathbb{Q}

$$
\mathbb{T} / \mathbb{Q} \cong(\mathbb{T} / \mathbb{D}) /(\mathbb{Q} / \mathbb{D})
$$

Thus,

$$
\mathfrak{k}=\aleph_{0} \cdot|\mathbb{T} / \mathbb{Q}|
$$

A set $A \subseteq \mathbb{T}$ is called a tail－set if the set $\{r \in \mathbb{T}: A+r=A\}$ contains a countable subset dense in \mathbb{T} ．

A set $A \subseteq \mathbb{T}$ is called a tail-set

similarly by the same argument we have

A set $A \subseteq \mathbb{T}$ is called a tail-set if the set $\{r \in \mathbb{T}: A+r=A\}$ contains a countable subset dense in \mathbb{T}.

Theorem 10 (J. Mycielski [1])

If $\mathbf{A C}_{2}$ holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $\mathbf{L M} \rightarrow \neg \mathbf{A C}_{2}$ and $\mathbf{B P} \rightarrow \neg \mathbf{A C}_{2}$.
similarly by the same argument we have

A set $A \subseteq \mathbb{T}$ is called a tail-set if the set $\{r \in \mathbb{T}: A+r=A\}$ contains a countable subset dense in \mathbb{T}.

Theorem 10 (J. Mycielski [1])

If $\mathbf{A C}_{2}$ holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. LM $\rightarrow \neg \mathbf{A C} \mathbf{C}_{2}$ and $\mathbf{B P} \rightarrow \neg \mathbf{A C} \mathbf{2}_{2}$

- similarly by the same argument we have

A set $A \subseteq \mathbb{T}$ is called a tail-set if the set $\{r \in \mathbb{T}: A+r=A\}$ contains a countable subset dense in \mathbb{T}.

Theorem 10 (J. Mycielski [1])

If $\mathbf{A C}_{2}$ holds true, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. LM $\rightarrow \neg \mathbf{A C} \mathbf{C}_{2}$ and $\mathbf{B P} \rightarrow \neg \mathbf{A C} \mathbf{2}_{2}$

- similarly by the same argument we have

Theorem 11 (J. Mycielski [1])

If a set of cardinality \mathfrak{k} is linearly ordered, then there exist a Lebesgue non-measurable set of reals and a set which does not possess the Baire Property, i.e. $\mathbf{L M} \rightarrow \neg$ Lk and BP $\rightarrow \neg \mathbf{L k}$.

$\mathbf{W k}$: a set of cardinality k can be well-ordered
$\mathbf{L k}$: a set of cardinality k can be linearly ordered

A free ultrafilter on ω is a filter $\mathcal{J} \subseteq \mathcal{P}(\omega)$ not containing any finite set and for every $A \subseteq \omega$, either $A \in$

A free ultrafilter on ω is a filter $\mathcal{J} \subseteq \mathcal{P}(\omega)$ not containing any finite set and for every $A \subseteq \omega$, either $A \in \mathcal{J}$ or $\omega \backslash A \in \mathcal{J}$.

[^3]A free ultrafilter on ω is a filter $\mathcal{J} \subseteq \mathcal{P}(\omega)$ not containing any finite set and for every $A \subseteq \omega$, either $A \in \mathcal{J}$ or $\omega \backslash A \in \mathcal{J}$.

Theorem 12

If the real line can be well-ordered, then there exists a free ultrafilter on ω, i.e. $\mathbf{W R} \rightarrow \mathbf{F U}$.

A free ultrafilter on ω is a filter $\mathcal{J} \subseteq \mathcal{P}(\omega)$ not containing any finite set and for every $A \subseteq \omega$, either $A \in \mathcal{J}$ or $\omega \backslash A \in \mathcal{J}$.

Theorem 12

If the real line can be well-ordered, then there exists a free ultrafilter on ω, i.e. $\mathbf{W R} \rightarrow \mathbf{F U}$.

Theorem 13 (W. Sierpiński [1])

A free ultrafilter on ω is a Lebesgue non-measurable set and does not possess the Baire Property, i.e. $\mathbf{L M} \rightarrow \neg \mathbf{F U}$ and $\mathrm{BP} \rightarrow \neg \mathrm{FU}$.

$\mathbf{W k}$ ：a set of cardinality k can be well－ordered
$\mathbf{L k}$ ：a set of cardinality k can be linearly ordered

LM：every set of R is Lebesgue measurable BP：every set of R possesses the Baire property

- some kind of duality between measure and category, J. Raisonnier [3] proved in the theory ZF + wAC that

- \equiv- some kind of duality between measure and category,

- some kind of duality between measure and category, J. Raisonnier [3] proved in the theory ZF + wAC that
- some kind of duality between measure and category,
J. Raisonnier [3] proved in the theory ZF + wAC that

Theorem 14 (J. Raisonnier)
If $\aleph_{1} \leq \mathfrak{c}$, then there is a Lebesgue non-measurable set, i.e. LM \rightarrow Inc.
parallel theorem on the Baire Property is not provable in

$$
\mathbf{Z F}+\mathbf{w A C} .
$$

- some kind of duality between measure and category,
J. Raisonnier [3] proved in the theory ZF + wAC that

Theorem 14 (J. Raisonnier)

If $\aleph_{1} \leq \mathfrak{c}$, then there is a Lebesgue non-measurable set, i.e.
LM \rightarrow Inc.

- parallel theorem on the Baire Property is not provable in ZF + wAC.

$\mathbf{W k}$: a set of cardinality k can be well-ordered
$\mathbf{L k}$: a set of cardinality k can be linearly ordered

LM: every set of R is Lebesgue measurable BP: every set of R possesss the Baire property

Regularity properties on the real line

Theorem 15
 If $\mathbf{w} \mathbf{C H}$ holds trie，then the following are equivalent

Theorem 15
 If wCH holds true, then the following are equivalent:

Theorem 15

If $\mathbf{w C H}$ holds true, then the following are equivalent: WR the set of reals \mathbb{R} can be well-ordered;
\square

Theorem 15

If wCH holds true, then the following are equivalent:
WR the set of reals \mathbb{R} can be well-ordered;
\neg Inc \aleph_{1} and \mathfrak{c} are comparable, i.e $\aleph_{1} \leq \mathfrak{c}$;
there exists a selector for the Lebesgue decomposition.

- If \aleph_{1} and c are incomparable, then c

Theorem 15

If wCH holds true, then the following are equivalent:
WR the set of reals \mathbb{R} can be well-ordered;
\neg Inc \aleph_{1} and c are comparable, i.e $\aleph_{1} \leq \mathfrak{c}$;
LDe there exists a selector for the Lebesgue decomposition.

Theorem 15

If wCH holds true，then the following are equivalent：
WR the set of reals \mathbb{R} can be well－ordered；
\neg Inc \aleph_{1} and \mathfrak{c} are comparable，i．e $\aleph_{1} \leq \mathfrak{c}$ ；
LDe there exists a selector for the Lebesgue decomposition．
－If \aleph_{1} and c are incomparable，then $c=2^{\aleph_{0}}<2^{\aleph_{1}}$ ．
－from $\aleph_{1}<2^{\aleph_{1}}$ we have $w C H \rightarrow \ln 3$

Theorem 15

If wCH holds true, then the following are equivalent:
WR the set of reals \mathbb{R} can be well-ordered;
\neg Inc \aleph_{1} and \mathfrak{c} are comparable, i.e $\aleph_{1} \leq \mathfrak{c}$;
LDe there exists a selector for the Lebesgue decomposition.

- If \aleph_{1} and \mathfrak{c} are incomparable, then $\mathfrak{c}=2^{\aleph_{0}}<2^{\aleph_{1}}$. Thus, we get $\operatorname{Inc} \rightarrow \mathbf{I n} 3$.
- from $\aleph_{1}<2^{\aleph_{1}}$ we have $w C H \rightarrow \operatorname{In} 3$

Theorem 15

If wCH holds true, then the following are equivalent:
WR the set of reals \mathbb{R} can be well-ordered;
\neg Inc \aleph_{1} and \mathfrak{c} are comparable, i.e $\aleph_{1} \leq \mathfrak{c}$;
LDe there exists a selector for the Lebesgue decomposition.

- If \aleph_{1} and \mathfrak{c} are incomparable, then $\mathfrak{c}=2^{\aleph_{0}}<2^{\aleph_{1}}$. Thus, we get $\operatorname{Inc} \rightarrow \mathbf{I n} 3$.
- from $\aleph_{1}<2^{\aleph_{1}}$ we have $\mathbf{w C H} \rightarrow \operatorname{In} 3$
$\neg \mathrm{Wk}$

$$
\begin{aligned}
& \text { In1: } c<k \ll c \\
& \text { Ins: } c \neq 2^{\aleph_{1}}
\end{aligned}
$$

IDe: there exists a selector for Lebesgue decomp.
Le: a set of cardinality k can be linearly ordered

In2: $\aleph_{1}<\aleph_{1}+c<\aleph_{1}+k$;
Inc: \aleph_{1} and c are incomparable
BS: there exists a Bernstein set FU: there exists a free ultrafilter on ω WR: the set of R can be well-oredered VS: there exists a selector for a Vitali set wCH: there is no set X such that $\aleph_{0}<|X|<c$ $\mathbf{L M}$: every set of R is Lebesgue measurable BP: every set of R possesss the Baire property

IDe: there exists a selector for Lebesgue decomp.
Le: a set of cardinality k can be linearly ordered
$\mathbf{w C H}$: there is no set X such that $\aleph_{0}<|X|<c$ $\mathbf{L M}$: every set of R is Lebesgue measurable BP: every set of R possesses the Baire property

IDe: there exists a selector for Lebesgue decomp.
Le: a set of cardinality k can be linearly ordered
$\mathbf{w C H}$: there is no set X such that $\aleph_{0}<|X|<c$ $\mathbf{L M}$: every set of R is Lebesgue measurable BP: every set of R possesses the Baire property

Theorem 16
 If everv uncoun table set of reals contains a perfect subset, then there is no set X such that $\aleph_{0}<|X|<c$, i.e. PSP
 Theorem 17
 If everv uncoun able set of reals contains a perfect subset, then \aleph_{1} and c are incomparable, i.e. PSP \rightarrow Inc.

Theorem 16

If every uncountable set of reals contains a perfect subset, then there is no set X such that $\aleph_{0}<|X|<\mathfrak{c}$, i.e. PSP $\rightarrow \mathbf{w C H}$.
\square If every uncountable set of reals contains a
\aleph_{1} and c are incomparable, i.e. PSP \rightarrow Inc.

Theorem 16

If every uncountable set of reals contains a perfect subset, then there is no set X such that $\aleph_{0}<|X|<\mathfrak{c}$, i.e. PSP $\rightarrow \mathbf{w C H}$.

Theorem 17

If every uncountable set of reals contains a perfect subset, then \aleph_{1} and \mathfrak{c} are incomparable, i.e. PSP \rightarrow Inc.

IDe: there exists a selector for Lebesgue decomp. Le: a set of cardinality k can be linearly ordered PSP: every uncount. set of R contains a perfect set
$\mathbf{w C H}$: there is no set X such that $\aleph_{0}<|X|<c$ $\mathbf{L M}$: every set of R is Lebesgue measurable BP: every set of R possesses the Baire property

Negative implications:

- according to Theorem 15
$\mathrm{wCH} \wedge \mathrm{WR} \equiv \mathrm{CH}$

Negative implications:

- according to Theorem 15

$\mathbf{w C H} \wedge \mathrm{WR} \equiv \mathbf{C H}$

Negative implications:

- according to Theorem 15

$\mathbf{w C H} \wedge \mathrm{WR} \equiv \mathbf{C H}$

- by K. Gödel constructible universe L

Negative implications:

- according to Theorem 15

$\mathbf{w C H} \wedge \mathbf{W R} \equiv \mathbf{C H}$

- by K. Gödel constructible universe L we have a model in which

Negative implications:

- according to Theorem 15

$\mathbf{w C H} \wedge \mathbf{W R} \equiv \mathbf{C H}$

- by K. Gödel constructible universe L we have a model in which $w C H ~ \leadsto \neg W R, \operatorname{In} 3 \leadsto \neg$ WR,
$w C H \nrightarrow \operatorname{lnc}, \operatorname{In} 3 \nrightarrow$ Inc,

Negative implications:

- according to Theorem 15

$\mathbf{w C H} \wedge \mathbf{W R} \equiv \mathbf{C H}$

- by K. Gödel constructible universe L we have a model in which
$\mathbf{w C H} \nrightarrow \neg$ WR, $\operatorname{In} 3 \nrightarrow \neg$ WR,
wCH \nrightarrow Inc, $\mathbf{I n} 3 \nrightarrow \mathbf{I n c}$,

Negative implications:

- according to Theorem 15

$\mathbf{w C H} \wedge \mathbf{W R} \equiv \mathbf{C H}$

- by K. Gödel constructible universe L we have a model in which

$$
\mathrm{wCH} \nrightarrow \neg \mathrm{WR}, \operatorname{In} 3 \nrightarrow \neg \mathrm{WR},
$$

wCH \nrightarrow Inc, $\mathbf{I n} 3 \nrightarrow$ Inc,
wCH $\rightarrow \neg$ LDe, $\operatorname{In} 3 ~ \rightarrow \neg$ LDe.

> The Axiom of Determinacy AD states that every two-person games of length ω in which both players choose integers is determined; that is, one of the two players has a winning strategy.

AD was proposed as an alternative to the Axiom of Choice by J. Mycielski and H. Steinhaus [2], but it is not possible to prove the consistency of ZF + AD with respect to ZF, the consistency strength of $A D$ is indicated as much high in due to results by Solovay and mainly by T. Jech [4]

The Axiom of Determinacy AD states that every two-person games of length ω in which both players choose integers is determined; that is, one of the two players has a winning strategy.

The Axiom of Determinacy AD states that every two-person games of length ω in which both players choose integers is determined; that is, one of the two players has a winning strategy.

- AD was proposed as an alternative to the Axiom of Choice by J. Mycielski and H. Steinhaus [2], but it is not possible to prove the consistency of $\mathbf{Z F}+\mathbf{A D}$ with respect to $\mathbf{Z F}$,

The Axiom of Determinacy AD states that every two-person games of length ω in which both players choose integers is determined; that is, one of the two players has a winning strategy.

- AD was proposed as an alternative to the Axiom of Choice by J. Mycielski and H. Steinhaus [2], but it is not possible to prove the consistency of $\mathbf{Z F}+\mathbf{A D}$ with respect to $\mathbf{Z F}$,
- the consistency strength of AD is indicated as much high in due to results by Solovay and mainly by T. Jech [4].

Regularity properties on the real line

Theorem 18 （J．Mycielski，R．Solovay）

If $\mathbf{A D}$ holds true，then

Theorem 18 (J. Mycielski, R. Solovay)

If $\mathbf{A D}$ holds true, then

wAC, PSP, LM, BP hold true,

Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then
a) wAC, PSP, LM, BP hold true,
there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}\left(\omega_{1}\right)$, i.e.

Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then
a) wAC, PSP, LM, BP hold true,
b) AC fails,

Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then
a) wAC, PSP, LM, BP hold true,
b) AC fails,
c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}\left(\omega_{1}\right)$, i.e. $2^{\aleph_{1}} \ll c=2^{\aleph_{0}}$.

$\neg \mathrm{Wk}$
CH: $\aleph_{1}=c$
In: $c<k \ll c$
Ins: $c \neq 2^{\aleph_{1}}$

LDe: there exists a selector for Lebesgue decomp.
Le: a set of cardinality k can be linearly ordered
PSP: every uncount. set of R contains a perfect set
$\mathbf{w C H}$: there is no set X such that $\aleph_{0}<|X|<c$ $\mathbf{L M}$: every set of R is Lebesgue measurable BP: every set of R possesses the Baire property

Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then
a) wAC, PSP, LM, BP hold true,
b) AC fails,
c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}\left(\omega_{1}\right)$, i.e. $2^{\aleph_{1}} \ll c=2^{\aleph_{0}}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

Theorem 18 (J. Mycielski, R. Solovay)

If $A D$ holds true, then
a) wAC, PSP, LM, BP hold true,
b) AC fails,
c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}\left(\omega_{1}\right)$, i.e. $2^{\aleph_{1}} \ll c=2^{\aleph_{0}}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent

ZFC + every Σ_{3}^{1}-set of reals is Lebesgue measurable;

Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then
a) wAC, PSP, LM, BP hold true,
b) AC fails,
c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}\left(\omega_{1}\right)$, i.e. $2^{\aleph_{1}} \ll c=2^{\aleph_{0}}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent
(a) $\mathbf{Z F C}+\mathbf{I C}{ }^{1}$

ZFC + every Σ_{3}^{1}-set of reals is Lebesgue measurable;

${ }^{1}$ IC denote statement "there exists a strongly inaccessible cardinal", i.e.

Theorem 18 (J. Mycielski, R. Solovay)

If AD holds true, then
a) wAC, PSP, LM, BP hold true,
b) AC fails,
c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}\left(\omega_{1}\right)$, i.e. $2^{\aleph_{1}} \ll c=2^{\aleph_{0}}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent
(a) $\mathbf{Z F C}+\mathbf{I C}{ }^{1}$
(b) ZFC + every Σ_{3}^{1}-set of reals is Lebesgue measurable;
${ }^{1}$ IC denote statement "there exists a strongly inaccessible cardinal", i.e.

Theorem 18 (J. Mycielski, R. Solovay)

If $A D$ holds true, then
a) wAC, PSP, LM, BP hold true,
b) AC fails,
c) there exists a surjection of $\mathcal{P}(\omega)$ onto $\mathcal{P}\left(\omega_{1}\right)$, i.e. $2^{\aleph_{1}} \ll c=2^{\aleph_{0}}$.

By R. Solovay [2] and by S. Shelah [4] the following theories are equiconsistent
(a) $\mathbf{Z F C}+\mathbf{I C} \boldsymbol{}^{1}$
(b) $\mathbf{Z F C}+$ every Σ_{3}^{1}-set of reals is Lebesgue measurable;
(c) $\mathbf{Z F}+\mathbf{D C}+\mathbf{L M}$.
${ }^{1}$ IC denote statement "there exists a strongly inaccessible cardinal", i.e.

Theorem 19

If $\mathbf{w A C}$ holds true then \aleph_{1} is a regular cardinal.
by the Shelah's argument in his Remark (1) of [4], the theory
is equiconsistent with the previous theories (a)-(c) S. Shelah proved that the consistencv of ZF implies the consistency of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{B P}$

Theorem 19

If $\mathbf{w A C}$ holds true then \aleph_{1} is a regular cardinal.

- by the Shelah's argument in his Remark (1) of [4], the theory

$$
\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}
$$

is equiconsistent with the previous theories (a)-(c).

Theorem 19

If wAC holds true then \aleph_{1} is a regular cardinal.

- by the Shelah's argument in his Remark (1) of [4], the theory

$$
\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}
$$

is equiconsistent with the previous theories (a)-(c).

- S. Shelah proved that the consistency of ZF implies
the consistency of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{B P}$,
are equiconsistent

Theorem 19

If wAC holds true then \aleph_{1} is a regular cardinal.

- by the Shelah's argument in his Remark (1) of [4], the theory

$$
\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}
$$

is equiconsistent with the previous theories (a)-(c).

- S. Shelah proved that the consistency of ZF implies the consistency of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{B P}$, i.e. the theories
(d) $\mathbf{Z F}$
(e) $\mathbf{Z F}+\mathbf{w} \mathbf{A C}+\mathbf{B P}$
are equiconsistent.
- by Shelah's model the consistency strength of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ is strictly greater than that of $\mathbf{Z F}+\mathbf{w} \mathbf{A C}+\mathbf{B P}$,
- by Shelah's model the consistency strength of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ is strictly greater than that of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{B P}$,
- by Solovay's model the consistency of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ is greater than that of ZF + wAC + PSP.
- by Shelah's model the consistency strength of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ is strictly greater than that of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{B P}$,
- by Solovay's model the consistency of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ is greater than that of ZF + wAC + PSP.

Thus, a natural question arises:

We give a positive answer to this question :)

- by Shelah's model the consistency strength of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ is strictly greater than that of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{B P}$,
- by Solovay's model the consistency of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ is greater than that of ZF + wAC $+\mathbf{P S P}$.

Thus, a natural question arises:

Question

Is consistency of the existence of an inaccessible cardinal necessary for PSP?

We give a positive answer to this question

- by Shelah's model the consistency strength of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ is strictly greater than that of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{B P}$,
- by Solovay's model the consistency of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ is greater than that of ZF + wAC + PSP.

Thus, a natural question arises:

Question

Is consistency of the existence of an inaccessible cardinal necessary for PSP?

We give a positive answer to this question :)

Theorem 20

If PSP holds true and \aleph_{1} is a regular cardinal, then \aleph_{1} is an inaccessible cardinal in the constructible universe \mathbf{L}.
the theory $\mathbf{Z F}+\aleph_{1}$ is regular $+\mathbf{P S P}$ is equiconsistent with the theories (a)-(c) Since the theories (d)-(e) are equiconsistent with the theory ZF $+\mathbf{w C H}$, we obtain

Theorem 20

If PSP holds true and \aleph_{1} is a regular cardinal, then \aleph_{1} is an inaccessible cardinal in the constructible universe \mathbf{L}.

- the theory $\mathbf{Z F}+\aleph_{1}$ is regular $+\mathbf{P S P}$ is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theorywCH, we obtain

- the consistencv of $\mathbf{Z F}+w A C+P S P$ is strictly greater than

Theorem 20

If PSP holds true and \aleph_{1} is a regular cardinal, then \aleph_{1} is an inaccessible cardinal in the constructible universe \mathbf{L}.

- the theory $\mathbf{Z F}+\aleph_{1}$ is regular $+\mathbf{P S P}$ is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory ZF + wCH, we obtain
S. Shelah [4] showed that Theorem 14 on the Baire Property is

Theorem 20

If PSP holds true and \aleph_{1} is a regular cardinal, then \aleph_{1} is an inaccessible cardinal in the constructible universe \mathbf{L}.

- the theory $\mathbf{Z F}+\aleph_{1}$ is regular $+\mathbf{P S P}$ is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory ZF + wCH, we obtain

- the consistency of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{P S P}$ is strictly greater than that of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{w C H}$.

Theorem 20

If PSP holds true and \aleph_{1} is a regular cardinal, then \aleph_{1} is an inaccessible cardinal in the constructible universe \mathbf{L}.

- the theory $\mathbf{Z F}+\aleph_{1}$ is regular $+\mathbf{P S P}$ is equiconsistent with the theories (a)-(c)

Since the theories (d)-(e) are equiconsistent with the theory ZF $+\mathbf{w C H}$, we obtain

- the consistency of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{P S P}$ is strictly greater than that of $\mathbf{Z F}+\mathbf{w A C}+\mathbf{w C H}$.
S. Shelah [4] showed that Theorem 14 on the Baire Property is not provable in the theory $\mathbf{Z F}+\mathbf{D C}$.

Thus，we get：

Thus, we get:

- BP \leftrightarrows Inc,

Thus, we get:

- BP \leftrightarrows Inc,
- since BP implies $\neg \mathbf{W R}$,

Thus, we get:

- BP \rightarrow Inc,
- since BP implies $\neg \mathbf{W R}$, then $\neg \mathbf{W R} \leftrightarrow \mathbf{I n c}$,

Thus, we get:

- BP \rightarrow Inc,
- since BP implies $\neg \mathbf{W R}$, then $\neg \mathbf{W R} \leadsto$ Inc,
- according to Theorem 15 we get $\mathbf{B P} \nrightarrow \mathbf{w C H}$,

Thus, we get:

- BP \rightarrow Inc,
- since BP implies $\neg \mathbf{W R}$, then $\neg \mathbf{W R} \leadsto \mathbf{I n c}$,
- according to Theorem 15 we get $\mathbf{B P} \nrightarrow \mathbf{w C H}$,
- by Theorem 16 we know that PSP $\rightarrow \mathbf{w C H}$,
- however, according to Theorem 14

Thus, we get:

- BP \rightarrow Inc,
- since BP implies $\neg \mathbf{W R}$, then $\neg \mathbf{W R} \leadsto \mathbf{I n c}$,
- according to Theorem 15 we get $\mathbf{B P} \nrightarrow \mathbf{w C H}$,
- by Theorem 16 we know that PSP $\rightarrow \mathbf{w C H}$, therefore BP $\rightarrow \mathbf{P S P}$,
- however, according to Theorem 14 we have BP \rightarrow LM

Thus, we get:

- BP \rightarrow Inc,
- since BP implies $\neg \mathbf{W R}$, then $\neg \mathbf{W R} \nrightarrow$ Inc,
- according to Theorem 15 we get $\mathbf{B P} \nrightarrow \mathbf{w C H}$,
- by Theorem 16 we know that PSP $\rightarrow \mathbf{w C H}$, therefore BP $\leadsto \mathbf{P S P}$,
- however, according to Theorem 14

```
we have BP
```

Thus, we get:

- BP \rightarrow Inc,
- since BP implies $\neg \mathbf{W R}$, then $\neg \mathbf{W R} \nrightarrow$ Inc,
- according to Theorem 15 we get $\mathbf{B P} \nrightarrow \mathbf{w C H}$,
- by Theorem 16 we know that PSP $\rightarrow \mathbf{w C H}$, therefore BP $\leadsto \mathbf{P S P}$,
- however, according to Theorem 14 we have BP $\lrcorner \mathbf{L M}$.

Diagram in which none of the indicated implications is provable in the theory $\mathbf{Z F}+\mathbf{D C}$

LDe: there exists a selector for Lebesgue decomp.
Lk: a set of cardinality k can be linearly ordered
PSP: every uncount. set of R contains a perfect set

In3
$\neg \mathrm{Wk}$

In1
In2: $\aleph_{1}<\aleph_{1}+c<\aleph_{1}+k$;
Inc: \aleph_{1} and c are incomparable
BS: there exists a Bernstein set FU: there exists a free ultrafilter on ω WR: the set of R can be well-oredered VS: there exists a selector for a Vitali set ${ }^{w} \mathbf{C H}$: there is no set X such that $\aleph_{0}<|X|<c$ LM: every set of R is Lebesgue measurable BP: every set of R possesss the Baire property

the next result was mentioned by J．Mycielski［1］

- the next result was mentioned by J. Mycielski [1]

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_{1} is a regular cardinal, then \aleph_{1} is an inaccessible cardinal in the constructible universe L

Since \aleph_{1} is not inaccessible in L in the Shelah's above mentioned model,

三 $\bar{\equiv}$

- the next result was mentioned by J. Mycielski [1]

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_{1} is a regular cardinal, then \aleph_{1} is an inaccessible cardinal in the constructible universe \mathbf{L}.

Since \aleph_{1} is not inaccessible in L in the Shelah's above mentioned model, we obtain

- the next result was mentioned by J. Mycielski [1]

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_{1} is a regular cardinal, then \aleph_{1} is an inaccessible cardinal in the constructible universe \mathbf{L}.

Since \aleph_{1} is not inaccessible in \mathbf{L} in the Shelah's above mentioned model,

- the next result was mentioned by J. Mycielski [1]

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_{1} is a regular cardinal, then \aleph_{1} is an inaccessible cardinal in the constructible universe \mathbf{L}.

Since \aleph_{1} is not inaccessible in \mathbf{L} in the Shelah's above mentioned model, we obtain

- BP $\rightarrow \neg$ LDe,

- the next result was mentioned by J. Mycielski [1]

Theorem 21

If there is no selector for the Lebesgue decomposition and \aleph_{1} is a regular cardinal, then \aleph_{1} is an inaccessible cardinal in the constructible universe \mathbf{L}.

Since \aleph_{1} is not inaccessible in \mathbf{L} in the Shelah's above mentioned model, we obtain

- BP $\rightarrow \neg$ LDe,
- LDe $九$ WR.

Diagram in which none of the indicated implications is provable in the theory ZF + DC

Regularity properties on the real line

A topological space $\langle X, O\rangle$ is a Fréchet space iff $\bar{A}=\operatorname{scl}(A)=\left\{\lim _{n \rightarrow \infty} x_{n}:(\forall n) x_{n} \in A\right\}$ for every set A－ I E，

A topological space $\langle X, \mathcal{O}\rangle$ is a Fréchet space iff $\bar{A}=\operatorname{scl}(A)=\left\{\lim _{n \rightarrow \infty} x_{n}:(\forall n) x_{n} \in A\right\}$ for every set $A \subseteq X$.
wAC holds true if and only if the real line is a Fréchet space

A topological space $\langle X, \mathcal{O}\rangle$ is a Fréchet space iff $\bar{A}=\operatorname{scl}(A)=\left\{\lim _{n \rightarrow \infty} x_{n}:(\forall n) x_{n} \in A\right\}$ for every set $A \subseteq X$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.
J. Mycielski's statement:

A topological space $\langle X, \mathcal{O}\rangle$ is a Fréchet space iff $\bar{A}=\operatorname{scl}(A)=\left\{\lim _{n \rightarrow \infty} x_{n}:(\forall n) x_{n} \in A\right\}$ for every set $A \subseteq X$ ．

Theorem（H．Herrlich）

wAC holds true if and only if the real line is a Fréchet space．
－ $\mathfrak{c}<\mathfrak{k} \rightarrow\left(\aleph_{1}, \mathfrak{c}\right.$ are incomparable $) \vee\left(\aleph_{1}<\aleph_{1}+\mathfrak{c}<\aleph_{1}+\mathfrak{k}\right)$
i．e． $\boldsymbol{I n} 1 \rightarrow \mathbf{I n c} \vee \mathbf{I n} 2$

A topological space $\langle X, \mathcal{O}\rangle$ is a Fréchet space iff $\bar{A}=\operatorname{scl}(A)=\left\{\lim _{n \rightarrow \infty} x_{n}:(\forall n) x_{n} \in A\right\}$ for every set $A \subseteq X$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

- $\mathfrak{c}<\mathfrak{k} \rightarrow\left(\aleph_{1}, \mathfrak{c}\right.$ are incomparable $) \vee\left(\aleph_{1}<\aleph_{1}+\mathfrak{c}<\aleph_{1}+\mathfrak{k}\right)$ i.e. $\boldsymbol{\operatorname { l n }} \mathbf{\rightarrow} \boldsymbol{\operatorname { l n }} \vee \mathbf{I n} 2$
J. Mycielski's statement:

In4:

$2^{\aleph_{1}}<\mathfrak{k} \vee\left(\neg\left(2^{\aleph_{1}} \geq \mathfrak{k}\right) \wedge \neg\left(2^{\aleph_{1}} \geq \mathfrak{k}+\aleph_{1}\right) \wedge \aleph_{1}+\mathfrak{k}<2^{\aleph_{1}}+\mathfrak{k}\right)$

A topological space $\langle X, \mathcal{O}\rangle$ is a Fréchet space iff $\bar{A}=\operatorname{scl}(A)=\left\{\lim _{n \rightarrow \infty} x_{n}:(\forall n) x_{n} \in A\right\}$ for every set $A \subseteq X$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

- $\mathfrak{c}<\mathfrak{k} \rightarrow\left(\aleph_{1}, \mathfrak{c}\right.$ are incomparable) $\vee\left(\aleph_{1}<\aleph_{1}+\mathfrak{c}<\aleph_{1}+\mathfrak{k}\right)$ i.e. $\boldsymbol{\operatorname { n n }} \rightarrow \mathbf{I n c} \vee \mathbf{I n} 2$
J. Mycielski's statement:

In4:

$$
2^{\aleph_{1}}<\mathfrak{k} \vee\left(\neg\left(2^{\aleph_{1}} \geq \mathfrak{k}\right) \wedge \neg\left(2^{\aleph_{1}} \geq \mathfrak{k}+\aleph_{1}\right) \wedge \aleph_{1}+\mathfrak{k}<2^{\aleph_{1}}+\mathfrak{k}\right)
$$

- $\neg \mathbf{L k} \rightarrow \ln 4$,

A topological space $\langle X, \mathcal{O}\rangle$ is a Fréchet space iff $\bar{A}=\operatorname{scl}(A)=\left\{\lim _{n \rightarrow \infty} x_{n}:(\forall n) x_{n} \in A\right\}$ for every set $A \subseteq X$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

- $\mathfrak{c}<\mathfrak{k} \rightarrow\left(\aleph_{1}, \mathfrak{c}\right.$ are incomparable $) \vee\left(\aleph_{1}<\aleph_{1}+\mathfrak{c}<\aleph_{1}+\mathfrak{k}\right)$ i.e. $\mathbf{I n} 1 \rightarrow \mathbf{I n c} \vee \mathbf{I n} 2$
J. Mycielski's statement:

In4:

$$
2^{\aleph_{1}}<\mathfrak{k} \vee\left(\neg\left(2^{\aleph_{1}} \geq \mathfrak{k}\right) \wedge \neg\left(2^{\aleph_{1}} \geq \mathfrak{k}+\aleph_{1}\right) \wedge \aleph_{1}+\mathfrak{k}<2^{\aleph_{1}}+\mathfrak{k}\right)
$$

- ᄀLk $\rightarrow \mathbf{I n} 4$,
$-\ln 4 \rightarrow \aleph_{1}<\aleph_{1}+\mathfrak{c}<\aleph_{1}+\mathfrak{k}$,

A topological space $\langle X, \mathcal{O}\rangle$ is a Fréchet space iff $\bar{A}=\operatorname{scl}(A)=\left\{\lim _{n \rightarrow \infty} x_{n}:(\forall n) x_{n} \in A\right\}$ for every set $A \subseteq X$.

Theorem (H. Herrlich)

wAC holds true if and only if the real line is a Fréchet space.

- $\mathfrak{c}<\mathfrak{k} \rightarrow\left(\aleph_{1}, \mathfrak{c}\right.$ are incomparable $) \vee\left(\aleph_{1}<\aleph_{1}+\mathfrak{c}<\aleph_{1}+\mathfrak{k}\right)$ i.e. $\ln 1 \rightarrow \mathbf{I n c} \vee \operatorname{In} 2$
J. Mycielski's statement:

In4:

$$
2^{\aleph_{1}}<\mathfrak{k} \vee\left(\neg\left(2^{\aleph_{1}} \geq \mathfrak{k}\right) \wedge \neg\left(2^{\aleph_{1}} \geq \mathfrak{k}+\aleph_{1}\right) \wedge \aleph_{1}+\mathfrak{k}<2^{\aleph_{1}}+\mathfrak{k}\right)
$$

- ᄀLk $\rightarrow \mathbf{I n} 4$,
- $\ln 4 \rightarrow \aleph_{1}<\aleph_{1}+\mathfrak{c}<\aleph_{1}+\mathfrak{k}$,
$-\mathfrak{c}<\mathfrak{k} \rightarrow\left(\mathfrak{c}<2^{\aleph_{1}}\right) \vee \operatorname{In} 4$, i.e. $\operatorname{In} 1 \rightarrow \ln 3 \vee \operatorname{In} 4$.

References

© Bernstein F., Zur Theorie der trigonomischen Reihen, Sitzungber. Sachs. Akad. Wiss. Leipzig 60 (1908), 325-338.
(iödel K., The consistency of the axiom of choice AND OF THE GENERALIZED CONTINUUM HYPOTHESIS WITH the AXIONS OF SET THEORY, Annals of Math. Studies, Princeton 1940.

R Cohen P. J., The independence of the continuum hypothesis, Proc. Natl. Acad. Sci. USA 50 (1963), 1143-1148, and 51 (1964), 105-110.

回 Jech T., Set Theory, Third edition, Springer-Verlag, Berlin 2006.

References

R Mycielski J., On the Axiom of Determinateness, Fund. Math. 53 (1964), 205-224.
© Mycielski J. and Steinhaus H., A mathematical axiom contradicting the axiom of choice, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 10 (1962), 1-3.
(回 Raisonnier J., A mathematical proof of S. Shelah's theorem on the measure problem and related results, Israel J. Math. 48 (1984), 48-56.

目 Shelah S., Can you take Solovay inaccessible away?, Israel J. Math. 48 (1984), 1-47.

References

(ie Sierpiński W., Démonstration de l'egalité $2^{\mathfrak{m}}-\mathfrak{m}=2^{\mathfrak{m}}$ pour les nombres cardinaux transfinis, Fund. Math. 34 (1947), 113-118.
Rolovay R. M., A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), 1-56.
(i) Specker E., Zur Axiomatik der Mengenlehre, Zeitschrift f. math. Logic and Grundlagen der Math. 3 (1957), 173-210.

R Vitali G., Sul problema della misura dei gruppi di punti di una retta, Bologna 1905.

[^0]: a Bernstein set is a classical example of a non-measurable set

[^1]: Note the following: if A, B are sets such that $|A|$

[^2]: Corollary 7
 If a set of cardinality \mathfrak{k} cannot be linearly ordered, then

[^3]: Theorem 13 (W. Sierpiński [1])

 A Tree uhtrather on wis a \&eoesouenon-measurabe set anat does not possess the Baire Property, i.e. LN i $\rightarrow \neg F U$ and RD \rightarrow - E II

